

AFRL-IF-RS-TR-2004-34

Final Technical Report
February 2004

AN EXCEPTION HANDLING SERVICE FOR
SOFTWARE AGENT ENSEMBLES

Massachusetts Institute of Technology

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. G340

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2004-34 has been reviewed and is approved for publication.

APPROVED: /s/

FRANK H. BORN
Project Engineer

 FOR THE DIRECTOR: /s/

JAMES A. COLLINS, Acting Chief
Information Technology Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE

FEBRUARY 2004
3. REPORT TYPE AND DATES COVERED

Final Apr 98 – Apr 03
4. TITLE AND SUBTITLE
AN EXCEPTION HANDLING SERVICE FOR SOFTWARE AGENT
ENSEMBLES

6. AUTHOR(S)
Mark Klein

5. FUNDING NUMBERS
C - F30602-98-2-0099
PE - 63760E
PR - AGEN
TA - T0
WU - 16

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Massachusetts Institute of Technology
77 Massachusetts Ave
Cambridge Massachusetts 02139

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFTB
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2004-34

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Frank H. Born/IFTB/(315) 330-4726/ Frank.Born@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

The objective of this project has been to develop technology that enables robust operation in open multi-agent systems
(MAS) where we have, in principle, no guarantees of reliable, compliant, or even friendly agents and infrastructures,
since we have no control or even necessarily any knowledge over how they are implemented. As part of this project we
have developed a substantial web-accessible knowledge base of widely usable exception handling expertise, as well as
technology that enables (1) the creation of better contingent contracts between agents (both human and software-
based) as well as (2) exception-handling agents that monitor MAS for problem symptoms, diagnose the underlying
problems, and intervene as appropriate to avoid or resolve these problems.

15. NUMBER OF PAGES
123

14. SUBJECT TERMS
Software Agents, Exception Handling, Multi-Agent Systems

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

:

Table of Contents

OBJECTIVES ... 1
TECHNICAL APPROACH.. 1

OVERVIEW OF RESULTS ... 1
TECHNICAL ACCOMPLISHMENTS ... 2

Exception Analysis Methodology ... 2
Exception Handling Knowledge Base .. 3

Knowledge Base Editing Tools... 3
MAS Design Methodology.. 3
Novel Exception Handlers.. 4

Contingent Contract Negotiation Algorithms .. 5
Exception Handling Agents .. 5

KNOWLEDGE DISSEMINATION ACTIVITIES .. 5
Complete List of Project Publications.. 5

Collaborations.. 9
Student Theses .. 10
Presentations.. 10
Spin-offs.. 10

REFERENCES .. 11
APPENDIX: SELECTED PAPERS ... 12

 Appendix A: Using Role Commitment Violation Analysis to Identify Exceptions 13

 Appendix B: Towards a Systematic Repository of Knowledge About Managing Multi-agent System
 Exceptions. ..26
 Appendix C: A Knowledge-Based Methodology for Designing Reliable Multi-Agent Systems............... 45
 Appendix D: Handling Resource Use Oscillation in Open Multi-Agent Systems 57
 Appendix E: Using Domain-Independent Exception Handling Services to Enable Robust Open Multi-
 Agent Systems: The Case of Agent Death.. 69
 Appendix F: Protocols for Negotiating Complex Contracts .. 89
 Appendix G: Exception Handling in Agent Systems....................................... ... 107

1

Objectives

The objective of this project has been to develop technology that enables robust operation

in open multi-agent systems (MAS) where we have, in principle, no guarantees of
reliable, compliant, or even friendly agents and infrastructures, since we have no control
or even necessarily any knowledge over how they are implemented. In a coalition

operation, for example, we may suddenly find ourselves needing to quickly be able to
work with agents from North Korea or Iraq without the luxury of first engaging in an
exhaustive code review. The same kinds of issues appear, in less extreme form, in such

non-military contexts as electronic commerce, disaster relief, and so on.

Technical Approach

Our technical approach has followed two tracks, both inspired by the ways exceptions are
dealt with in human society:

♦ Contingent contracts (improving MAS design): This track has involved developing
methodologies and negotiation algorithms that allow humans and software agents to

define more ‘exception-proof” contracts that specify what each agent does under
normal circumstances (their coordination mechanisms) as well as what they do when
things go wrong (their exception handlers).

♦ Exception handling agents (improving MAS operation): We have defined,
implemented and evaluated exception handling (EH) agents that monitor a MAS for
possible exception symptoms, diagnose the underlying problem when symptoms

occur, and intervene to prevent or resolve the exceptions once diagnosed. This idea
has been inspired by the many institutions that serve that role in human society,
including the police, law courts, security and exchange commission, and so on.

Both of these tracks build upon a knowledge base of generic exception handling
expertise, which allows humans and software agents to understand the possible kinds,

causes, and responses for a wide range of possible MAS exceptions.

Overview of Results

It is difficult to fully capture the results of over four years of intensive and varied effort
by many participants, but in the following we will provide an overview of the key

technical and knowledge-dissemination outputs of this project.

2

Our technical accomplishments have included:

- Developing an exception analysis methodology for systematically identifying and

organizing MAS exceptions and responses in a way that enables one to find and apply
this expertise quickly in new contexts.

- A substantive knowledge base of EH knowledge, created by using this methodology

to organize, as well as augment, previous work in the MAS and related research
literatures

- A collaborative web-based knowledge base editing tool for maintaining this

knowledge base, that is now in daily use.
- A MAS design methodology that exploits the EH knowledge base to help people

design more robust MAS coordination mechanisms

- The design, implementation and evaluation of novel exception handlers for handling
agent death and resource use oscillation

- The design, implementation and evaluation of novel negotiation algorithms that

enable software agents and humans to more effectively define complex contingent
contracts

- The design, implementation and evaluation of EH agents that exploit the EH

knowledge base to allow run-time monitoring, exception detection, diagnosis and
intervention while making minimal requirements of the other MAS agents

Our knowledge-dissemination activities have included over 40 publications, invited
presentations, student theses, collaborations with other researchers, and spin-off projects.

Technical Accomplishments

Exception Analysis Methodology

The first step involved in developing more robust multi-agent systems is a systematic

approach for identifying and organizing information about what kinds of things can go
wrong, and what can be done about them, in a way that facilitates reuse in a wide variety
of contexts. Our approach to this challenge is documented in:

Klein, M., Using Role Commitment Violation Analysis to Identify Exceptions in Multi-
Agent Coordination Mechanisms. Working Paper ASES-WP-2000-04. Center for

Coordination Science, Massachusetts Institute of Technology, Cambridge MA USA.
2000. (Available in Appendix)

3

Klein, M. and C. Dellarocas, Towards a Systematic Repository of Knowledge about

Managing Multi-Agent System Exceptions. Working paper ASES-WP-2000-01. Center
for Coordination Science, Massachusetts Institute of Technology, Cambridge MA USA.
2000. (Available in Appendix).

Exception Handling Knowledge Base

The exception handling knowledge base continues to grow and currently represents over

600 MAS exception types as well as over 300 different exception handler techniques.
This expertise has been harvested from previous relevant research literature as well as
from the application of our exception analysis methodology to key MAS coordination

mechanisms. There are three main classes of coordination possible in MAS, including
sharing (resource allocation), fit (collaborative synthesis), and flow (input/output
sequences) (Malone and Crowston 1994). We have captured EH expertise for the MAS

mechanisms most widely used in all three of these categories, with a particular focus on
markets (i.e. auctions), collaborative design, and supply chains. The exceptions we have
identified fall into two main categories, including ‘commitment violations’ (where some

agent does not perform a task it had committed to do) as well as ‘emergent dysfunctions’
(where many locally correct actions combine to produce globally dysfunctional dynamics
such as large resource use oscillations).

This knowledge base can be viewed using the WWW-based knowledge-base browser
described in the next section.

Knowledge Base Editing Tools

We have gone through several generations of tools for browsing and editing this EH
knowledge base, all created building on the ideas developed for the MIT Process

Handbook (Malone, Crowston et al. 1999). This work has culminated in the creation of a
web-based system that allows multiple users to simultaneously browse and even edit the
contents of the EH knowledge base.

This system can be accessed by going to http://franc2.mit.edu/pql/ and logging in with
login “guest” and password “guest”. Note that this login will only allow users to utilize

the browsing, but not the editing, capabilities of the system.

MAS Design Methodology

We have developed a methodology that uses the EH knowledge base to allow human
MAS designers to anticipate and design in responses for the exceptions that can occur in

such systems. Since there is a very wide range of potential failure modes and ways of

4

dealing with them, and it is difficult for any one individual or group to know all the

expertise applicable to any given system, such a methodology can be very valuable. For
further details, see:

M. Klein. A Knowledge-Based Methodology for Designing Reliable Agent Systems.
Proceedings of the 2nd International Workshop on Software Engineering for Large-Scale
Multi-Agent Systems, held in conjunction with the International Conference on Software

Engineering. 2003. Portland, Oregon - USA. (Available in Appendix).

Novel Exception Handlers

In addition to systematizing exception expertise described in the existing research

literature, we have also developed novel techniques for several exception types which we
have judged to be important and inadequately addressed to date, including:

Collusive reputation fraud. Reputation servers are the exception handling mechanism
most widely used in market mechanisms, but are vulnerable themselves to the exception
of collusive reputation fraud (wherein agents collude to fraudulently improve or weaken

their own or other agent’s reputations). Our handlers use selective anonymity and
reputation cluster based filtering to substantially mitigate these problems. See:
Dellarocas, C. Immunizing online reputation reporting systems against unfair ratings and

discriminatory behavior. In the Proceedings of the 2nd ACM Conference on Electronic
Commerce. 2000. Minneapolis, MN.

Resource use oscillation. When resources are allocated on a first-come first-serve basis
(as is true in a very wide range of contexts ranging from Internet bandwidth to grocery
store checkout lines), delays in the resource status information used by the resource

consumers can result in the emergence of large and harmful resource use oscillations. We
have developed a novel approach to this problem based on the use of selective stochastic
load-dependent resource request rejection. See: Klein, M. and Y. Bar-Yam. Handling

Resource Use Oscillation in Multi-Agent Markets. in AAMAS Workshop on Agent-
Mediated Electronic Commerce V. 2003. Melbourne Australia. (Available in Appendix).

Agent death. While good techniques (e.g. rollbacks and mirroring) have been developed
for failure recovery in closed distributed systems, comparably effective techniques have
not been available for open agent systems where cooperation of the individual
components is not guaranteed. Our approach to this challenge integrates a range of

techniques, including reputation-based bid filtering, early agent death detection, result
caching and task retry/task cancellation interventions. See: Klein, M., J.A. Rodriguez-
Aguilar, and C. Dellarocas, Using Domain-Independent Exception Handling Services to

5

Enable Robust Open Multi-Agent Systems: The Case of Agent Death. Autonomous

Agents and Multi-Agent Systems, 2003. 7(1/2). (Available in Appendix).

Contingent Contract Negotiation Algorithms

In an open MAS, we can not assume that the normative and exception-handling behaviors

of all of the participating agents will be fixed and universally accepted. Rather, agents
must be able to negotiate contingent contracts between themselves that specify who will
do what. Work to date on negotiation has focused almost exclusively on ‘simple’

contracts consisting of a single issue (usually price) or several independent issues.
Contingent contracts, by contrast, are much more complex, consisting of many inter-
dependent issues. This issue inter-dependency radically changes the nature of the

algorithms that are suitable for negotiating good contracts. We have developed and
evaluated what we believe are the first MAS negotiation algorithms suitable for complex
contracts with multiple interdependent issues. For details, see: Klein, M., et al., Protocols

for Negotiating Complex Contracts. IEEE Intelligent Systems, 2003. In press. (Available
in Appendix).

Exception Handling Agents

We have developed an architecture wherein a set of specialized EH agents monitor a
diverse community of agents in an open MAS in order to detect exception symptoms,
diagnose the underlying cause(s), and intervene when necessary. These EH agents make

only minimal assumptions about the other agents in the MAS, requiring only that each
agent implement a simple API. This architecture has been implemented and tested
extensively using a MAS testbed we developed called SimHazard, and has also been

implemented as a Java-based CoABS Grid service. For details, see:

Klein et al. Exception Handling in Agent Systems. Proceedings of the Third International

Conference on Autonomous Agents, Seattle, Washington, 1999. (Available in Appendix).

Klein et al. The Case of Agent Death. Autonomous Agents and Multi-Agent Systems,

2003. 7(1/2). (Available in Appendix).

Knowledge Dissemination Activities

Complete List of Project Publications

♦ Dellarocas, C. and M. Klein. A Knowledge-Based Approach for Handling Exceptions
in Business Processes. in Proceedings of the 8th Workshop on Information

Technologies and Systems (WITS'98). 1998. Helsinki, Finland.

6

♦ Klein, M., A Knowledge-Based Approach to Handling Exceptions in Workflow

Systems. 1998, MIT Center for Coordination Science: Cambridge MA USA.

♦ Klein, M. and C. Dellarocas. Exception Handling in Collaborative Web-Based
Agents. in Proceedings of the Seventh Workshop-Conference on Enabling

Technologies: Infrastructure for Collaborative Enterprises (WET ICE). 1998.
Stanford University, USA.

♦ Klein, M., A Knowledge-Based Approach to Handling Exceptions in Workflow

Systems. 1998, MIT Center for Coordination Science: Cambridge MA USA.

♦ Klein, M. Toward Adaptive Workflow Systems. in Proceedings of a Workshop at the
ACM Computer-Supported Collaborative Work Conference. 1998. Seattle WA.

♦ Dellarocas, C. and M. Klein. Towards civil agent societies: Creating robust, open
electronic marketplaces of contract net agents. in Proceedings of the International
Conference on Information Systems (ICIS-99). 1999. Charlotte, North Carolina USA.

♦ Klein, M. and C. Dellarocas. Exception Handling in Agent Systems. in Proceedings of
the Third International Conference on AUTONOMOUS AGENTS (Agents '99). 1999.
Seattle, Washington.

♦ Dellarocas, C. and M. Klein. An Experimental Evaluation of Domain-Independent
Fault Handling Services in Open Multi-Agent Systems. in Proceedings of The
International Conference on Multi-Agent Systems (ICMAS-2000). 2000. Boston, MA.

♦ Dellarocas, C., M. Klein, and J.A. Rodriguez-Aguilar. An Exception-Handling
Architecture for Software Agent Marketplaces based on the Contract Net Protocol. in
ACM Conference on Electronic Commerce 2000. 2000. Minneapolis, Minnesota,

USA.

♦ Dellarocas, C. and M. Klein, A knowledge-based approach for handling exceptions in
business processes. Information Technology & Management, 2000. 1(3): p. 155-69.

♦ Klein, M. and C. Dellarocas, A Knowledge-Based Approach to Handling Exceptions
in Workflow Systems. Journal of Computer-Supported Collaborative Work. Special
Issue on Adaptive Workflow Systems., 2000. 9(3/4).

♦ Klein, M. Towards a Systematic Repository of Knowledge About Managing
Collaborative Design Conflicts. in Proceedings of the International Conference on AI
in Design (AID-2000). 2000. Boston MA: Kluwer Academic Publishers.

7

♦ Klein, M. and C. Dellarocas, Domain-Independent Exception Handling Services That

Increase Robustness in Open Multi-Agent Systems. 2000, Massachusetts Institute of
Technology: Cambridge MA USA.

♦ Klein, M. and C. Dellarocas, Towards a Systematic Repository of Knowledge about

Managing Multi-Agent System Exceptions. 2000, Massachusetts Institute of
Technology: Cambridge MA USA.

♦ Klein, M. and C. Dellarocas, Domain-Independent Exception Handling Services That

Increase Robustness in Open Multi-Agent Systems. 2000, Center for Coordination
Science, Massachusetts Institute of Technology, Cambridge MA USA.

♦ Klein, M. and C. Dellarocas, A Systematic Repository of Knowledge About Handling

Exceptions in Business Processes. 2000, Center for Coordination Science,
Massachusetts Institute of Technology, Cambridge MA USA.

♦ Klein, M., Using Role Commitment Violation Analysis to Identify Exceptions in

Multi-Agent Coordination Mechanisms. 2000, Center for Coordination Science,
Massachusetts Institute of Technology, Cambridge MA USA.

♦ Klein, M., J.A. Rodriguez-Aguilar, and C. Dellarocas, Using Domain-Independent

Exception Handling Services to Enable Robust Open Multi-Agent Systems: The Case
of Agent Death. 2000, Massachusetts Institute of Technology: Cambridge MA USA.

♦ Woolf, B.P., et al. A Digital Market Place for Education. in Proceedings of the

SSGRR 2000 Computer and E-Business Conference. 2000. L'Aguila Rome Italy.

♦ Woolf, B.P., et al., A Digital Market Place for Education, in The Internet and
Education, V. Milutinovic and F. Patricelli, Editors. 2000: L'Aguila Rome Italy.

♦ Faratin, P. and M. Klein. Automated Contract Negotiation and Execution as a System
of Constraints. in The IJCAI-01 Workshop on Distributed Constraint Reasoning.
2001. Seattle WA USA.

♦ Klein, M., et al., Negotiating Complex Contracts. 2001, Massachusetts Institute of
Technology: Cambridge MA USA.

♦ Klein, M., et al. Negotiating Complex Contracts. in AAAI Fall Symposium on

Autonomous Negotiating Systems. 2001. Falmouth, MA, USA: AAAI Press.

8

♦ Klein, M., et al. What Complex Systems Research Can Teach Us About Collaborative

Design. in International Workshop on CSCW in Design. 2001. London. Ontario,
Canada: IEEE Press.

♦ Klein, M. and Y. Bar-Yam, Handing Emergent Dysfunctions in Open Peer-to-Peer

Systems. 2001, MIT Center for Coordination Science: Cambridge MA.

♦ Faratin, P., et al., Simple Negotiating Agents in Complex Games: Emergent Equilibria
and Dominance of Strategies, in Intelligent Agent VIII: Agent Theories,

Architectures, and Languages. 2002, Springer Verlag. p. 367--377.

♦ Klein, M., et al., A Complex Systems Perspective on Computer-Supported
Collaborative Design Technology. Communications of the ACM, 2002. 45(11): p. 27-

31.

♦ Klein, M., et al. Negotiating Complex Contracts. in Autonomous Agents and Multi-
Agent Systems. 2002. Bologna Italy: AAAI Press.

♦ Klein, M., C. Dellarocas, and J.A. Rodriguez-Aguilar. A Knowledge-Based
Methodology for Designing Robust Multi-Agent Systems. in Autonomous Agents and
Multi-Agent Systems. 2002. Bologna Italy: AAAI Press.

♦ Klein, M., P. Faratin, and Y. Bar-Yam. Using an Annealing Mediator to Solve the
Prisoners’ Dilemma in the Negotiation of Complex Contracts. in Agent-Mediated
Electronic Commerce (AMEC-IV) Workshop. 2002. Bologna Italy: Springer.

♦ Klein, M., et al. A Complex Systems Perspective on How Agents Can Support
Collaborative Design. in Workshop on Agents in Design. 2002. Cambridge MA: Key
Centre iof Design Computing and Cognition, University of Sidney, Australia.

♦ Klein, M., P. Faratin, and Y. Bar-Yam, Using an Annealing Mediator to Solve the
Prisoners’ Dilemma in the Negotiation of Complex Contracts, in Proeedings of the
Agent-Mediated Electronic Commerce (AMEC-IV) Workshop. 2002, Springer-Verlag.

♦ Klein, M., J.A. Rodriguez-Aguilar, and C. Dellarocas, Using Domain-Independent
Exception Handling Services to Enable Robust Open Multi-Agent Systems: The Case
of Agent Death. Autonomous Agents and Multi-Agent Systems, 2003. 7(1/2).

♦ Klein, M., et al., The Dynamics of Collaborative Design: Insights From Complex
Systems and Negotiation Research. Concurrent Engineering Research &
Applications, 2003. In press.

9

♦ Klein, M., et al., Negotiating Complex Contracts. Group Decision and Negotiation,

May 2003.

♦ Klein, M., et al., A Complex Systems Perspective on Collaborative Design, in Multi-
Agent Systems: An Application Science, T. Wagner, Editor. 2003, Kluwer.

♦ Klein, M. A Knowledge-Based Methodology for Designing Reliable Multi-Agent
Systems. in International Workshop on Software Engineering for Large-Scale Multi-
Agent Systems, held in conjunction with the International Conference on Software

Engineering. 2003. Portland, Oregon - USA.

♦ Klein, M. and Y. Bar-Yam. Handling Resource Use Oscillation in Multi-Agent
Markets. in AAMAS Workshop on Agent-Mediated Electronic Commerce V. 2003.

Melbourne Australia.

♦ Klein, M., et al. Negotiation Algorithms for Collaborative Design Settings. in The
10th ISPE International Conference on Concurrent Engineering Research and

Applications (CERA-03). 2003. Madeira Island, Portugal.

♦ Parsons, S., J.A. Rodriguez-Aguilar, and M. Klein, A Bluffer's Guide to Auctions.
2003, MIT Sloan School of Management: Cambridge MA USA.

♦ Parsons, S. and M. Klein, Diagnosing Faults in Open Distributed Systems. 2003,
MIT: Cambridge MA USA.

♦ Parsons, S. and M. Klein, Notes on Diagnosis for Open and Distributed Systems.

2003, MIT: Cambridge MA USA.

♦ Klein, M., et al., A Complex Systems Perspective on How Agents Can Support
Collaborative Design, in Agent Supported Cooperative Work, Y. Ye and E.F.

Churchill, Editors. In press, Kluwer Academic Publishers.

Collaborations

This project has led to fruitful collaborations around the topic of exception handling in

multi-agent systems. In addition to the interactions that occurred within the Control
of Agent Based Systems (CoABS) program in the context of the Coalition Agent
eXperiment (CoAX), Scalability, Control Robustness and Noncombatent Evacuation
Operation (NEO) Technology Integration Experiment (TIE), the project has been
carried forth through joint research with:

♦ Dr. Juan Antonio Rodriguez Aguilar, AI Institute, Spain
♦ Prof. Chrysanthos Dellarocas, MIT

10

♦ Prof. Benjamin Grosof, MIT

♦ Dr. Peyman Faratin, MIT
♦ Prof. Simon Parsons, Brooklyn CUNY
♦ Prof. Hiroki Sayama, Japan Telecommunications College

♦ Dr. Yaneer Bar-Yam, New England Complex Systems Institute
♦ Dr. Richard Metzler, New England Complex Systems Institute

Student Theses

Our project has led to the completion of three Masters’ theses on MAS exception
handling, all for students in the MIT Department of Electrical Engineering and Computer
Science, all in May 1999: David Shue, Lijin Aryananda, Muthitacharoen.

Presentations

Our project team made technical presentations on this work at the 1/99, 6/99, 9/00 and
7/01 CoABS PI meetings. In addition to that, we have given many invited talks and

tutorials on the results of this work at venues including:

♦ (tutorial) Autonomous Agents Conference. Bologna Italy. July 2002.

♦ (invited talk) Workshop on New Directions in Software Technology. December 2001.
♦ (invited talk) International Workshop on CSCW in Design. July 2001.
♦ (invited talk) WET ICE Workshop on Evaluating CSCW. June 2001.

♦ (tutorial) Autonomous Agents Conference. May 2001.
♦ (invited talk) Fuji Xerox Inc. August 2000.
♦ (tutorial) World Computer Congress. August 2000.

♦ (invited talk) International Workshop on Distributed Systems of Knowledge. July
2000.

♦ (tutorial) International Conference on Enterprise Information Systems. March 1999.

♦ (invited talk) National University of Singapore. November 1998.
♦ (tutorial) Pacific Rim International Conference on Artificial Intelligence. November

1998.

♦ (tutorial) International Conference on Multi-Agent Systems. July 1998.

Spin-offs

This project has led the creation of other projects that continue to carry this work

forward, funded by Hewlett-Packard, and by the National Science Foundation. We were
approached by Premonition Inc to commercialize some aspects of our exception handling
technology, and had gotten to the point of arranging license terms when the company ran
out of money and folded as part of the general ‘.com’ bust several years ago.

11

References
Malone, T. W. and K. Crowston (1994). “The interdisciplinary study of coordination.”

ACM Computing Surveys 26(1): 87-119.

Malone, T. W., K. Crowston, et al. (1999). “Tools for inventing organizations: Toward a
handbook of organizational processes.” Management Science 45(3): 425-443.

12

Appendix: Selected Papers

13

Appendix A: Using Role Commitment Violation Analysis to Identify
Exceptions in Open Multi-Agent Systems

Mark Klein

Center for Coordination Science
Massachusetts Institute of Technology

m_klein@mit.edu

J uan A ntonio Rodriguez- Aguilar
Center for Coordination Science

Massachusetts Institute of Technology

jarjar@mit.edu

ABSTRACT

In this paper, we describe a systematic knowledge-based methodology, called role
commitment violation analysis, for identifying the failure modes (‘exceptions’) possible
in an open multi-agent system utilizing a given coordination mechanism. Examples of

this analysis are presented for auction-based resource-sharing mechanisms.

INTRODUCTION
"open systems ... represent arguably the most important application for multi-agent

systems" [1]

Multi-agent systems (MAS), we believe, will increasingly be open systems, i.e. systems
where the constituent components may vary dynamically and are neither developed nor

operated under centralized control [2]. A wide range of important applications such as
electronic markets, military and disaster relief operations as well as other kinds of virtual
organizations, require the kind of instant operability of independently developed

components that multi-agent systems have the potential to provide [3] [1].

A critical challenge to realizing this potential is knowing how to develop effective multi-
agent systems out of the diverse and unreliable (buggy, malicious, or simply “dumb”)

agents and infrastructures we can expect to encounter in open contexts The vast majority
of MAS work to date has considered well-behaved agents running on reliable
infrastructures [4]. It is clear however that in open systems we can expect, in contrast, to

find:

♦ Unreliable Infrastructures. In large distributed systems like the Internet,
unpredictable host and communication problems can cause agents to slow down or

14

die unexpectedly, messages to be delayed, garbled or lost, etc. These problems

become worse as the applications increase in size and therefore potential points of
failure.

♦ Non-compliant agents. In open systems, agents can not always be trusted to follow

the rules properly due to bugs, programmer malice and so on. This can be expected to
be especially prevalent and important in contexts such as electronic commerce or
military operations where there may be significant incentives for fraud or malice.

♦ Emergent dysfunctions. Emerging multi-agent system applications are likely to
involve complex and dynamic interactions that can lead to emergent dysfunctions,
such as chaotic behavior, with the coordination mechanisms that have proved most

popular to date [5] [6].

All of these departures from “ideal” multi-agent system behavior can be called
exceptions, and can result in poor performance, system shutdowns, and security

vulnerabilities.

This paper describes a novel knowledge-based methodology called ‘role commitment
violation analysis’ (RCV) that we have developed to help MAS designers systematically

identify the kinds of exceptions that can occur in an open MAS, thereby helping them
ensure their design is capable of handling these potential problems. In the remainder of
this paper we will describe this methodology using examples drawn from an analysis of

exceptions in the auction-based resource sharing mechanisms.

THE RCV METHODOLOGY
The exceptions that characterize a given MAS coordination mechanism can be identified

using a technique we developed called Role Commitment Violation (RCV) analysis.
RCV analysis is based on the insight that coordination fundamentally involves the
process of agents making (implicit or explicit) commitments to each other to make it

possible for them to operate effectively given inter-dependencies between their actions
[7] [8] [9]. Coordination failures (i.e. exceptions) can then be viewed as the ways in
which elements of a MAS can fail to achieve their commitments to each other. RCV

analysis systematically identifies such exceptions as follows:

♦ Identify the roles involved in the MAS.

♦ For each role, identify the commitments that each role requires of the other roles.

♦ For each commitment, identify the ways the commitment may be violated

This analysis can be done, of course, starting from scratch for each new coordination
mechanism, but we have found it is possible to capture generic roles, commitments and

15

exceptions in a knowledge base such that the analysis of a new coordination mechanism

can be greatly sped up by examining abstract role-commitment-violation patterns that
subsume (parts of) the mechanism. This feature makes the RCV analysis technique
knowledge-based and therefore cumulative. We will make these ideas more concrete by

looking at examples of RCV analysis for auction-based mechanisms below. We will
begin by demonstrating a from-scratch analysis, and then demonstrate how an
appropriately structured knowledge base can facilitate this kind of analysis.

Role Identification: Our initial examples will concern the well-known auction-based task-
sharing mechanism known as the “Contract Net” (CNET) [10] [11] [12] [13] [14]:

Contractor Role Subcontractor Role

Create RFB
(Request For

Bids)

Create Bid

Select Bid

Perform Work

Receive Results

Send RFB

Send Bid

Award Contract

Send Results

Figure 1. The Contract Net Coordination Mechanism.

An agent (the “contractor”) identifies a task that it cannot or chooses not to do locally and
attempts to find another agent (the “subcontractor”) to perform the task. It begins by
creating a Request For Bids (RFB) which describes the desired work, and then sending it

to potential subcontractors (typically identified using a matchmaker that indexes agents
by the skills they claim to have). Interested subcontractors respond with bids (specifying
such issues as the time needed to perform the task) from which the contractor selects a

winner. This is thus essentially a first-price sealed-bid auction. The winning agent, once
notified of the award, performs the work (potentially subcontracting out its own subtasks
as needed) and submits the results to the contractor. We can see that there are thus at least

three key roles: the contractor, subcontractor, and matchmaker.

16

Commitment Identification: The next step is to identify inter-role commitments. As in

previous efforts to formalize commitments, every commitment is modeled as involving
two parties: the ‘source’ role requiring the commitment, and the ‘target’ role being asked
to discharge the commitment [7]. There are in general two kinds of commitments: design-

time commitments that are part of the mechanism definition (e.g. that a bidding agent will
send only one bid at a given price level), as well as run-time commitments created as a
result of the operation of the mechanism (e.g. that an agent will in fact perform the task it

was allocated with the contracted cost quality and delivery time).

The first commitment in CNET arises when the contractor queries the matchmaker to get
the list of agents potentially appropriate for performing the subtask:

C1: matchmaker provides contractor with correct candidates in a timely way

In order for the matchmaker to discharge this commitment, it in turn requires
commitments on its own, including:

C2: contractor provides matchmaker with correct skills requirements

C3: subcontractors provide matchmaker with up-to-date skills descriptions

C4: messaging-mechanism provides matchmaker with timely and correct delivery of

results to contractor

C5: host-computer provides matchmaker with sufficient computing cycles

C6: coder provides matchmaker with correct code

Each of these commitments, in turn, may imply further commitments that must be
honored in order for them to be discharged correctly. For example, in order to discharge
commitment C5, a host computer requires that:

C7: system-operator ensures that host has sufficient available capacity

We can continue this recursive process of analyzing what commitments are required by
the different roles until we produce an exhaustive enumeration thereof.

Just from this simple example we can see several important features of RCV analysis. We
are able to perform this analysis based solely on an understanding of the agent-
matchmaker interaction protocol, without needing to know any of the details of how this

protocol is implemented by any particular agent. The process of enumerating what
commitments are required for others to be successfully discharged allows us to identify
commitments and even roles that are often left implicit in MAS protocol descriptions (e.g

the messaging-mechanism and system-operator roles) leading in principle to a complete
description of the commitment set, though in practice it may be quite time-consuming. It

17

is important, however, that commitments be enumerated from the idealized perspective of

each role. For example, in an auction the seller ideally wants the following commitment:

C8: bidders provide seller with bids up to their true valuation for good

even though in many situations this may not be realistic (e.g. in auctions where true

value-revelation is not the dominant strategy, or where bidders collude). Many important
MAS exceptions represent violations of such idealized commitments.

Commitment Violation (Exception) Identification: The next step of RCV analysis is

identifying, for each inter-role commitment, how that commitment can be violated, i.e.
what its characteristic exceptions are. There are three major kinds of exceptions:

1. Infrastructure exceptions, which represent violations of commitments made by the

infrastructure to provide dependable communication and computation. Examples
include crashed host computers, and unreliable or slow communication links.

2. Agent exceptions, which represent violations of commitments agents make to each

other. Examples include agents performing tasks late, doing sub-quality work, or not
adhering to the agreed-upon coordination protocols.

3. Systemic exceptions, which represent violations of commitments made by the system

operator to create a MAS environment well-suited to the tasks at hand. Examples
include not populating the MAS with agents containing all the skills needed to
perform the tasks at hand, or utilizing coordination mechanisms that produce

emergent dysfunctions, i.e. unwelcome dynamic properties such as resource
allocation thrashing (when agents spend a disproportionate amount of time re-
allocating resources among them) [15] and resource poaching (occurs when a slew of

low-priority tasks ties up scarce resources so they are unavailable for later, higher-
priority tasks) [16].

Many exceptions can be identified simply as the possible negations of the commitment

itself. For example, the message-sender role is responsible for discharging three
commitments: delivering the right message to the right place at the right time. There are
thus three main exceptions: wrong message (the message is garbled), wrong place (the

message is delivered to other than the intended target), and wrong time (the message is
either too early or, more likely, excessively delayed). As another example, the
subcontractor commitment to perform a task with a given quality cost and duration can be

violated by late results, sub-contractual quality, or higher-than-produced cost (it is
logically possible, though unlikely, that early results, unexpectedly high quality or low
costs could also be exceptions).

Unfortunately, it is not possible to exhaustively identify all possible commitment

violations in an open MAS via deduction from the commitment descriptions. For

18

example, commitment C5 above (host-computer provides matchmaker with sufficient

cycles) could be violated because the host computer has experienced a software virus or
distributed denial of service attack. Before such attacks were invented, we could not
expect to simply infer them from the commitment description. Another example is

emergent dysfunctions like those mentioned above. There is as yet no complete analytic
theory concerning which kinds of MAS are apt to face which kinds of dynamic
dysfunctions. This is a fundamental property of systems, like an open MAS, that are built

from black box components, and introduces a experiential component into exception
analysis; one must rely on one’s previous experience in order to be able to fully identify
possible exceptions, and an exhaustive identification may not be possible.

Using a Knowledge Base to Facilitate RCV Analysis: The fact that exception
identification can be time-consuming as well as at least partly experiential in nature has
led us to explore whether it is possible to ‘cache’ RCV results so we can analyze

exceptions in new protocols more quickly and completely. We have found that we can do
so by identifying abstract RCV patterns that appear repeatedly in many different
coordination mechanisms. One simple example of this is a generalization of the

matchmaker query described above (exceptions are left out of this description for
conciseness):

C10: agent1 provides agent2 with correct query

C11: agent2 provides agent1 with correct response

C12: messaging-mechanism provides agent2 with timely and correct delivery of results

C13: host-computer provides agent2 with sufficient computing cycles

C14: coder provides agent2 with correct code

C15: system-operator ensures that host has sufficient available capacity

Any query in a coordination mechanism can be viewed as an instance of this pattern, and

is subject as a result to the exceptions associated with this pattern.

Our recent efforts have been devoted to identifying a set of abstract RCV patterns
suitable for analyzing auctions, building on an abstract auction model (developed by us

based on work by [17] [18] [19]) with the following subprocesses:

♦ Bid call. How buyers are invited to submit bids.

♦ Ask call. How sellers are invited to submit “asks” (desired bids).

♦ Bid collection. How bids are collected by auctioneer.

♦ Ask collection. How asks are collected by auctioneer.

♦ Winner determination. How the buyer-seller match is found.

19

♦ Clearing. How the end of the bidding round is determined.

♦ Information revelation. How/when bid information is revealed to bidders.

♦ Closing. When to close the auctioning permanently.

All auction types represent different variants of these subprocesses. A typical Dutch

auction [20] for example, uses downward bidding for 'bid call', includes no 'ask call' step,
determines the winner as the first bid received as the auctioneer calls prices downwards,
clears the bidding round when a bid above the reservation price is received or the

reservation price is reached, reveals the winning bid (and possibly the winner's identity)
after clearing, and resolves ties by selecting randomly one of the bidders involved. A
typical multi-unit Japanese auction [21] involves a calls for bids every time the

auctioneer raises the price, includes no 'ask call' step, collects bids as the number of units
requested by each bidder, all bidders which do not explicitly request the auctioneer to
drop out as part of the winning set, does not reveal any information about bidders' bids

during bidding, and clears the bidding round when the total demand from bidders
matches the supply (number of units of the lot at auction).
Our analysis to date shows that most auction exceptions are inherited from the abstract

auction model, with relatively few exceptions specific to a given protocol. All auctions,
for example, are potentially liable to the ‘auctioneer agent crashes’ exception. The bid
collection step has such potential exceptions as impersonated bids (where a bidder

presents a bid as if it came from someone else), multiple bids from a single buyer at a
given price (a protocol violation that may represent a denial of service attack) and so on.
Similarly, the winner determination step is potentially prone to exceptions that include

unsupported bids (where the winner is unable to pay the winning price), or too few
bidders (which may reduce the competitiveness of the auction below a level the
auctioneer or seller is willing to accept).

In some cases we are able to identify exceptions that apply to an entire subclass of
auction protocols. One example concerns information revelation. If bid information is not
revealed (e.g. as with closed bid auctions such as the Vickrey [20]) then this opens the

possibility of collusion between the buyer and auctioneer in winner determination; since
the bidders will not be in a position to detect such collusion [22]. For another example, all
ascending price auctions (e.g. English or Japanese protocols) are prone to non-

termination of the winner determination step if enough agents (due either to bugs or
malice) simply do not ever drop out.

There are some exceptions, however, which are idiosyncratic to a particular auction
mechanism. The Japanese auction, for example, relies on each bidder agent to explicitly

indicate that it is reducing its demand or dropping out entirely. If an active bidding agent
crashes then the auctioneer will still consider its bids active, prices will be driven above

20

the appropriate level, possibly infinitely (i.e. non-terminating) if the dead agent’s last

demand exceeded the total supply, and the dead agent may be inappropriately selected as
a winner.

Our knowledge base is also being populated with RCV patterns for the techniques used to

handle MAS exceptions, since these are clearly an important part of MAS coordination
mechanisms. An interesting multi-tiered example of this occurs concerning tie bids in
Dutch auctions. A typical response to this exception is to reset the price to a higher level

and restart the descending price clock. A potential exception with this technique is
infinite bid collisions, wherein two or more agents collide indefinitely at the same price
and as a result the auction does not terminate. A typical response to the infinite bid

collision exception, in turn, is to terminate the bidding after a pre-determined number of
collisions and then rely on the auctioneer to break the tie, for example by selecting the
first bid, last bid, or a random bid. This tie breaking mechanism is potentially subject in

turn to the ‘buyer/auctioneer collusion’ RCV pattern discussed above, wherein in the
absence of revealing bid information, it is possible for the auctioneer to favor one bidder
over others, e.g. by always rewarding tie bids to the favored bidder. This insight

represents another example of how a collection of abstract RCV patterns can be helpful in
identifying potential exceptions that might not otherwise be obvious.

A second example of an RCV pattern concerning exceptions with exception handling

techniques concerns reputation services [23]. Such services are used to avoid ‘non-
performing agent’ exceptions by publicly identifying agents who have under-performed
in the past. Reputation services typically assume the following idealized commitments:

C16: agents provide all other agents with honest ratings

C17: agents perform for other agents without discrimination i.e. they are no more likely
to non-perform for one agent than another

We can easily imagine agents that violate these assumptions, however. Imagine for
example a clique of agents that (perhaps fraudulently) provide each other with a large
number of highly positive ratings, while selectively non-performing for targeted

customers. The average ratings of such agents are apt to remain high, especially if, as is
sometimes done, outlier reputation scores are discarded.

CONTRIBUTIONS OF THIS WORK

The motivation underlying this work is that the space of potentially important exceptions
in open multi-agent systems is large and often non-obvious and it is valuable as a result to
have a systematic technique for identifying them. The Role-Commitment-Violation

21

(RCV) methodology presented in this paper represents, we believe, a significant and

novel contribution towards this goal.

The power of our approach comes from two sources:

♦ It mandates a systematic enumeration of all the roles and (implicit as well as explicit,

idealized as well as realistic) commitments inherent in a MAS using a given
coordination mechanism.

♦ It builds on a taxonomically-structured knowledge base of abstract RCV patterns that

facilitates identifying the exception modes for new protocols.

We consider below the contribution the RCV methodology makes in these two areas.

Role-Commitment Enumeration: Existing agent software engineering methodologies [24]

[25] [26] as well as software requirements capture methodologies in general [27] [28]
discuss the notions of roles and commitments. Our work differs in that it requires a
superset of the inter-agent requirements as typically construed by these approaches for

the purpose of completeness in exception identification. Our approach considers, for
example, idealized commitments from a given roles’ perspective that are not achieved by
the final code but remain critical for exception analysis. It also considers a wider variety

of roles: agent-oriented software engineering methodologies typically consider only roles
that have explicit run-time interactions, while RCV extends this to include other roles
such as the system operator, messaging infrastructure, computing infrastructures and so

on.

RCV Pattern Knowledge Base: Existing exception identification techniques, except for
specialized circumstances such as deadlock properties in distributed protocols [29] [30],

have left the identification of possible exception modes up to the software designers
themselves [31] [32]. Our work differs in that it includes an approach for collecting
abstract exception information that is applicable to a range of MAS coordination

mechanisms, thereby offering the potential of greatly reducing the effort involved in
exception analysis. RCV can also be viewed, we believe, as a useful complement to
traditional failure identification techniques well-suited to open agent systems because it

focuses on agent inter-relationships rather than failure modes for the agents themselves.

FUTURE WORK
Our work in this area is progressing along several fronts. We are continuing to

accumulate a knowledge base of RCV patterns for auction mechanisms. We have focused
so far on Dutch, first-price sealed-bid, and Japanese auctions, and will be analyzing
important types including Vickrey and N-to-N (e.g. double dutch) auctions.

22

Our current commitment representation is semi-formal. Formally represented

commitment structures can offer additional power, for example as a basis of exception
diagnosis services, as follows [33] [34] [35]. If a given role has failed to achieve a
commitment, and none of the commitments it in turn requires have been violated, then we

can infer that the agent implementing the role has failed, otherwise we can trace back
through the causal web of the commitment structure to find the responsible element(s).
Note that this approach does not violate the black box assumption we must make in open

MAS; we make no assumptions about how an agent works but merely observe its actions.

We have found that RCV patterns can be arranged into a taxonomy based on their
function, in the same way that books in a library are arranged by topic, in order to

facilitate quickly finding the patterns that apply to the coordination mechanism one is
interested in. We have begun developing such a taxonomy based on previous efforts from
the process management and MAS research communities [7] [36].

ACKNOWLEDGMENTS
This work was supported by NSF grant IIS-9803251 (Computation and Social Systems
Program) and by DARPA grant F30602-98-2-0099 (Control of Agent Based Systems

Program). The authors gratefully acknowledge many helpful comments from the
members of the MIT Center for Coordination Science.

REFERENCES

[1] Wooldridge, M., N.R. Jennings, and D. Kinny. A Methodology for Agent-Oriented
Analysis and Design. in Proceedings of the Third Annual Conference on Autonomous
Agents (AA-99). 1999. Seattle WA USA: ACM Press.

[2] Hewitt, C. and P.D. Jong, Open Systems. 1982, Massachusetts Institute of
Technology.

[3] Jennings, N.R., K. Sycara, and M. Wooldrige, A Roadmap of Agent Research and

Development. Autonomus Agents and Multi-Agent Systems, 1998. 1: p. 275-306.

[4] Hägg, S. A Sentinel Approach to Fault Handling in Multi-Agent Systems. in
Proceedings of the Second Australian Workshop on Distributed AI, in conjunction

with Fourth Pacific Rim International Conference on Artificial Intelligence
(PRICAI'96). 1996. Cairns, Australia.

[5] Youssefmir, M. and B. Huberman. Resource contention in multi-agent systems. in

First International Conference on Multi-Agent Systems (ICMAS-95). 1995. San
Francisco, CA, USA: AAAI Press.

23

[6] Sterman, J.D., Learning in and about complex systems. 1994, Cambridge, Mass.:

Alfred P. Sloan School of Management, Massachusetts Institute of Technology. 51.

[7] Singh, M.P., An Ontology for Commitments in Multiagent Systems: Toward a
Unification of Normative Concepts. Artificial Intelligence and Law, 1999.

[8] Jennings, N.R., Coordination Techniques for Distributed Artificial Intelligence, in
Foundations of Distributed Artificial Intelligence, G.M.P. O'Hare and N.R. Jennings,
Editors. 1996, John Wiley & Sons. p. 187-210.

[9] Gasser, L., DAI Approaches to Coordination, in Distributed Artificial Intelligence:
Theory and Praxis, N.M. Avouris and L. Gasser, Editors. 1992, Kluwer Academic
Publishers. p. 31-51.

[10] Smith, R.G. and R. Davis, Distributed Problem Solving: The Contract Net
Approach. Proceedings of the 2nd National Conference of the Canadian Society for
Computational Studies of Intelligence, 1978.

[11] Baker, A. Complete manufacturing control using a contract net: a simulation
study. in Proceedings of the International Conference on Computer Integrated
Manufacturing. 1988. Troy New York USA: IEEE Computer Society Press.

[12] Boettcher, K., D. Perschbacher, and C. Wessel, Coordination of distributed
agents in tactical situations. Ieee, 1987(87CH2450): p. 1421-6.

[13] Bouzid, M. and A.-I. Mouaddib, Cooperative uncertain temporal reasoning for

distributed transportation scheduling. Proceedings International Conference on Multi
Agent Systems, 1998.

[14] Smith, R.G. and R. Davis, Applications Of The Contract Net Framework:

Distributed Sensing. Distributed Sensor Nets: Proceedings of a Workshop, 1978.

[15] Youssefmir, M. and B.A. Huberman, Clustered volatility in multiagent dynamics.
Journal of Economic Behavior & Organization, 1997. 32(1): p. 101-18.

[16] Chia, M.H., D.E. Neiman, and V.R. Lesser. Poaching and distraction in
asynchronous agent activities. in Proceedings of the Third International Conference
on Multi-Agent Systems. 1998. Paris, France.

[17] Sandholm, T., eMediator: A Next Generation Electronic Commerce Server. 1999,
Washington University at St. Louis: St Louis, MO, USA.

[18] Wurman, P.R., M.P. Wellman, and W.E. Walsh, The Michigan Internet

AuctionBot: a configurable auction server for human and software agents.
Proceedings of the Second International Conference on Autonomous Agents. ACM.,
1998.

24

[19] Rodriguez-Aguilar, J.A., et al. Competitive Scenarios for Heterogeneous Trading

Agents. in Second International Conference on Autonomous Agents (AGENTS'98).
1998.

[20] McAfee, R.P. and J. McMillan, Auctions and Bidding. J. Economics Lit., 1987.

XXV: p. 699--738.

[21] Cassady, R., Auctions and Auctioneering. 1967: University of California Press.

[22] Priest, C. Commodity Trading Using An Agent-based Iterated Double-Auction. in

Third International Conference on Autonomous Agents (AGENTS'99). 1999.

[23] Dellarocas, C. Mechanisms for coping with unfair ratings and discriminatory
behavior in online reputation reporting systems. in International Conference on

Information Systems (ICIS-00) (under review). 2000.

[24] Wooldridge, M., N.R. Jennings, and D. Kinny, The Gaia methodology for agent-
oriented analysis and design. Autonomous Agents & Multi Agent Systems, 2000.

3(3): p. 285-312.

[25] Bussmann, S., N. Jennings, and M. Wooldridge, On the Identification of Agents,
in Agent-Oriented Software Engineering, P. Ciancarini and M. Wooldridge, Editors.

Dec 2000 (in press).

[26] Venkatraman, M. and M.P. Singh, Verifying Compliance with Commitment
Protocols: Enabling Open Web-Based Multiagent Systems. Autonomous Agents and

Multi-Agent Systems, 1999. 3(3).

[27] Pohl, K., The Three Dimensions of Requirements Engineering: A Framework and
its Applications. Information Systems, 1994. 19(4): p. 234-248.

[28] Finkelstein, A. Requirements Engineering: a review and research agenda. 1994.

[29] Avresky, D.R. and D.R. Kaeli, Fault-tolerant parallel and distributed systems.
1998, Boston, Mass: Kluwer Academic. xii, 399.

[30] Mullender, S.J., Distributed systems. 2nd ed. ACM Press frontier series. 1993,
New York Wokingham, England ; Reading, Mass.: ACM Press ; Addison-Wesley
Pub. Co. xvi, 601.

[31] Hunt, J., D.R. Pugh, and C.J. Price, Failure mode effects analysis: a practical
application of functional modeling. Applied Artificial Intelligence, 1995. 9(1): p. 33-
44.

[32] Raheja, D. Software system failure mode and effects analysis (SSFMEA)-a tool
for reliability growth. in Proceedings of the International Symposium on Reliability

25

and Maintainability (ISRM-90). 1990. Tokyo, Japan: Union of Japanese Sci. & Eng;

Tokyo, Japan.

[33] Klein, M. and C. Dellarocas. Exception Handling in Agent Systems. in
Proceedings of the Third International Conference on AUTONOMOUS AGENTS

(Agents '99). 1999. Seattle, Washington.

[34] Klein, M. and C. Dellarocas, Domain-Independent Exception Handling Services
That Increase Robustness in Open Multi-Agent Systems. 2000, Massachusetts

Institute of Technology: Cambridge MA USA.

[35] Kleer, J.d., A.K. Macworth, and R. Reiter. Characterizing Diagnoses. in
Proceedings of AAAI-90. 1990.

[36] Malone, T.W., et al., Tools for inventing organizations: Toward a handbook of
organizational processes. Management Science, 1999. 45(3): p. 425-443.

26

Appendix B: Towards a Systematic Repository of Knowledge About
Managing Multi-agent System Exceptions

MARK KLEIN, PHD

Center for Coordination Science
Massachusetts Institute of Technology
m_klein@mit.edu

http://ccs.mit.edu/klein/

CHRYSANTHOS DELLAROCAS, PHD
Sloan School of Management

Massachusetts Institute of Technology
dell@mit.edu
http://mit.ccs.edu/dell/

Abstract. A critical challenge to creating effective agent-based systems is

allowing them to operate effectively in environments where failures
(‘exceptions’) can occur. An important barrier to achieving this has been the
lack of systematized dissemination of exception handling techniques. This

paper describes a semi-formal Web-accessible repository, built as an
augmentation of the MIT Process Handbook, that is designed to enable
learning about, adding to, and exploiting multi-agent system exception

handling expertise.

The Challenge

A critical challenge to creating effective agent-based systems is making them robust in
the face of potential failures. Most work to date on multi-agent systems has focused,
however, on supporting such basic functionality such as matchmaking (Decker, Sycara et

al. 1997) and inter-agent communication (Finin, Labrou et al. 1997), and has typically
assumed relatively simple closed environments where the infrastructure is reliable and
agents can be trusted to work correctly (Hägg 1996). It is clear however that in many if

not most important applications for multi-agent technology, these assumptions will not
hold. We can expect, in contrast, to find at least somewhat unreliable infrastructures
(such as the Internet), non-compliant agents (due to bugs or even malicious intent), and

27

emergent dysfunctions (when simple coordination mechanisms produce unexpected

dysfunctional behaviors in complex contexts). All of these departures from “ideal” multi-
agent system behavior can be called exceptions, and the results of inadequate exception
handling include the potential for poor performance, system shutdowns, and security

vulnerabilities.

A key barrier to the development and utilization of improved exception handling in

multi-agent systems has been a lack of systematized dissemination of expertise in this
area. Exception handling is fundamentally a multi-disciplinary topic with research efforts
scattered across disparate communities including real-time systems (Burns and Wellings

1996), distributed systems (Mullender 1993), robotics (Hindriks, de Boer et al. 1998),
computer-supported cooperative work (Mi and Scacchi 1993) (Chiu, Karlapalem et al.
1997) (Klein 1998) (Auramaki and Leppanen 1989) (Finkelstein, Gabbay et al. 1994),

manufacturing control (Fletcher and Misbah 1999) (Adamides and Bonvin 1993) (Katz

1993), planning (Traverso, Spalazzi et al. 1996) (Howe 1995) (Birnbaum, Collins et al.
1990) (Broverman and Croft 1987) (Firby 1987), and multi-agent systems (Hägg 1996)

(Kaminka and Tambe 1997) (Venkatraman and Singh 1999) (Bansal, Ramohanarao et al.
1997). The result is that good ideas developed within one discipline do not readily
propagate to researchers and practitioners in other settings, and opportunities are lost to

carry on a more systematic and cumulative exploration of the range of potentially useful
exception handling techniques.

The work described in this paper addresses these challenges directly by developing a
semi-formal Web-accessible repository of exception handling expertise organized so as to
facilitate key uses including:

♦ Pedagogy: helping students, researchers and practitioners learn about the state of the
art in exception handling management

♦ Development: helping practitioners develop more robust multi-agent systems
♦ Research: helping researchers identify gaps in exception management technology,

identify common abstractions, facilitate discussion, and foster development of new

ideas

The remainder of this paper will describe the key ideas and tools making up the exception
handling repository, evaluate its efficacy with respect to the goals listed above, and

describe potential directions for future work.

28

Our Approach

Our approach is to capture exception handling knowledge using a substantively extended
version of the tools and techniques developed as part of the MIT Process Handbook
project. The Handbook is a process knowledge repository which has been under

development at the Center for Coordination Science (CCS) for the past six years (Malone
and Crowston 1994) (Malone, Crowston et al. 1998). The growing Handbook database
currently includes over 5000 process descriptions ranging from specific (e.g. for a

university purchasing department) to generic (e.g. for resource allocation and multi-
criteria decision making). The CCS has developed a Windows-based tool for editing the
Handbook repository contents, as well as a Web-based tool for read-only access. The

Handbook is under active use and development by a highly distributed group of more
than 40 scientists, teachers, students and sponsors for such diverse purposes as adding
new process descriptions, teaching classes, and business process re-design.

In the following sections we will present the core concepts underlying the Handbook,
describe how these concepts and associated tools were extended to capture exception

handling expertise, and discuss how this enables pedagogy, research, and development.

2.1. Underlying Process Handbook Concepts

The Handbook takes advantage of four simple but powerful concepts to capture and
organize process knowledge: attributes, decomposition, dependencies, and specialization.

Process Attributes: Like most process modeling techniques, the Handbook allows
processes to be annotated with attributes that capture such information as a textual

description, typical performance values (e.g. how long a process takes to execute), as
well as applicability conditions (i.e. constraints on the contexts where the process can be
used).

Decomposition: Also like most process modeling techniques, the Handbook uses the
notion of decomposition: a process is modeled as a collection of activities that can in turn

be broken down (“decomposed”) into subactivities.

Dependencies: Another key concept we use is that coordination can be viewed as the

management of dependencies between activities (Malone and Crowston 1994). Every
dependency can include an associated coordination mechanism, which is simply the
process that manages the resource flow and thereby coordinates the activities connected

by the dependency. The key advantage of representing processes using dependencies and

29

coordination mechanisms is that they allow us to abstract away details about how ‘core’

activities coordinate with each other, and thereby making it easier to explore different
ways of doing so. We will see examples of this below.

Specialization: The final key concept is that processes can be arranged into a taxonomy,
with very generic processes at one extreme and increasingly specialized processes at the
other. Processes are organized based on their function, so that processes with similar

purposes appear close to each other. This facilitates finding and comparing alternative
ways for performing functions of interest, thereby fostering easy transfer of ideas. Sibling
processes can be grouped into “bundles” with tradeoff tables that capture the relative pros

and cons of these alternatives.

2.2. Extending the Handbook to Capture exception Knowledge

While the Handbook as described above is well-suited for describing exception handling
processes by themselves, it does not capture crucial information concerning what types of

exceptions exist, in what contexts (i.e. for which multi-agent coordination mechanisms)
they can appear, what impact they have, or what processes are suitable for handling them.
The novel contribution of the work described herein involved extending the Handbook so

it can capture this information. This required two additional elements: the exception
taxonomy, and the exception management meta-process. These are described below.1

Exception Taxonomy: The exception taxonomy is a hierarchy of exception types, ranging
from general exceptions on the left to more specific ones on the right (Figure 1):

1 The examples described below will all refer to the well-known coordination mechanism

known as the ‘Contract Net’ protocol (Smith and Davis 1978), which is used to match up
tasks with agents in multi-agent systems. In this protocol, an agent (hereafter called the
‘contractor’) attempts to find another agent (hereafter called the ‘subcontractor’) to

perform some task. It begins by creating a Request For Bids (RFB) which describes the
desired work, and then sending it to potential subcontractors (typically identified using a
matchmaker that indexes agents by the skills they claim to have). Interested

subcontractors respond with bids (specifying such issues as the time needed to perform
the task) from which the contractor selects a winner. The winning agent, once notified of
the award, performs the work (potentially subcontracting out its own subtasks as needed)

and submits the results to the contractor.

30

Figure 1. A fragment of the exception type taxonomy.

As the taxonomy shows, there are three main classes of exception possible in multi-agent
systems, all of which can be framed as violations of some (implicit or explicit)

commitment:

♦ Infrastructure Commitment Violations: The infrastructure has a commitment to

provide reliable and predictable agent operation and communication. In large
distributed systems like the Internet, however, unpredictable node and link failures
may cause agents to die unexpectedly, messages to be delayed, garbled or lost, etc. If

a contract net agent dies, for example, there are several immediate consequences. If
the agent is acting as a subcontractor, its customer clearly will not receive the results

Bf ^ IHC>4lu4liD« V>«w lucvDliDn Hour' TTcm
FM E« V*v MfeASM

'Vdiil Pa»<il EicqMuri

■_^^>Bil noUi
fWw<jBnl Jin<ur>clMni

dnpHndHiciBi

^ortraclQi TMUI« ■I

^m ro—mJuiim "nJifUnffT \— iiAcgnlrAcloi VIDIAI«I tc

>»j|i;liui*Qi vHiUInT iwir

ndiuchdit whmFf

laihng IkvrlQchl

°(«l»Hh'i^

\-:-in 1.01 ICVILF.!

^^nmgt, itfc^mrj

lintf appailuiiriM«__

lU ^khi

««•

■afcDi viiJfla

'[aaaiiln aatcmn"

hg^

31

it is expecting. In addition, if the agent has subcontracted out one or more subtasks,

these subtasks and all the sub-sub-… tasks created to achieve them become
‘orphaned’, in the sense that there is no longer any real purpose for them and they are
uselessly tying up potentially scarce subcontractor resources. Finally, if the system

uses a matchmaker, it will continue to offer the now dead subcontractor as a
candidate (a ‘false positive’), resulting in wasted message traffic.

♦ Agent Commitment Violations. The agents in a multi-agent system have a

commitment to adhere properly to the coordination protocols they participate in. In
open systems, however, agents are developed independently, come and go freely, and
thus can not always be trusted to follow the rules properly due to bugs, bounded

rationality, programmer malice and so on. This can be expected to be especially
prevalent and important in contexts such as electronic commerce where there may be
significant incentives for fraud. A non-compliant contract net agent, for example,

could wreak havoc through fraudulent advertising, bidding or subcontracting.
Imagine, for example, an agent that falsely informs the matchmaker that it has a
comprehensive set of skills, sends in highly attractive but fraudulent bids (e.g.

specifying it can do any task almost instantaneously) for all pending tasks, and once it
wins the awards returns either no results, or simply incorrect ones. The result would
be that many if not all of the system’s tasks would be awarded to a non-performing

agent.

♦ System Commitment Violations. The multi-agent system manager/designer has a
commitment to define the system so the agents can get work done efficiently. The

relatively lightweight multi-agent coordination mechanisms that have proved popular
to date can, however, produce unexpected emergent dysfunctions in complex
dynamic contexts. One example is ‘resource poaching’, wherein a slew of low-

priority but long-duration tasks tie up the subcontractors, thereby freezing out
resources needed for the higher-priority tasks that arrive later (Chia, Neiman et al.
1998). This does not represent an error per se, but rather an unexpected consequence

of the protocol when applied in a complex environment.

Different multi-agent system coordination mechanisms have differing characteristic

exception types. The Contract Net protocol, for example, is vulnerable to fraudulent bids,
while other protocols like TEAMCORE (Tambe M 1997) have different vulnerabilities
(e.g. agents failing to detect conditions that should trigger pre-arranged coordinated
actions). The MIT exception repository captures these relationships by building on a

taxonomy of multi-agent system coordination mechanisms (Figure 2):

32

Figure 2. A fragment of the coordination mechanism taxonomy.

Every coordination mechanism is linked to the exception types that characterize it; a
mechanisms’ characteristic exceptions are inherited by its specializations unless

explicitly over-ridden. Every exception is annotated with its typical impact on the
associated coordination mechanism. The agent death exception, for example, can as we
have seen reduce the efficiency of the multi-agent system by wasting bandwidth and host

cycles.

Exception types are linked, in turn, to the exception handling processes suitable for

handling them; these processes are themselves arranged into a taxonomy, producing the
following overall structure (Figure 3):

coordination
mechanisms

exception
types

exception
handling
processes

has exception is handled by

Figure 3. Linkages to/from the exception type taxonomy

The exception handing process taxonomy (see Figure 4) is where the bulk of the

repository content resides:

SpecJalJzalJon VJewei: 'MAS Cooid Mechanisms'

W^dii View

sligmeigic

cognilive

Window

individuali^l^ (game Iheory)

A

33

Figure 4. A subset of the exception handling process taxonomy.

There are four main classes of exception handling processes, divided into two pairs. If a
exception has not yet occurred, we can use:

♦ Exception anticipation processes, which uncover situations where a given class of
exception is likely to occur. Resource poaching, for example, can be anticipated when

there is a flood of long duration tasks requiring scarce, non-preempting contract net
agents to perform them.

♦ Exception avoidance processes, which reduce or eliminate the likelihood of a given
class of exception. Resource poaching can be avoided, for example, by allowing
contract net agents to preempt currently executing tasks in favor of higher priority

pending tasks.

If the exception has already occurred, we can use:

-1 ^.^n Jr.iJirm ^'m^m

E> Jm' filw

JCITJ

34

♦ Exception detection processes, which detect when an exception has actually occurred.

These can range from simple mechanisms such as timeouts (e.g. to help detect when a
subcontractor agent has died) to more sophisticated mechanisms such as socially
attentive monitoring (Kaminka and Tambe 1997) wherein agents look for violations

of normative relationships with other members of their team.

♦ Exception resolution processes, which resolve an exception once it has happened. A

common resolution process is for an agent to simply try again (e.g. re-send an RFB if
it received no bids because all the subcontractors were busy last time).

The Exception Management Meta-Process: The exception taxonomy and associated links
described above capture the range of possible exceptions and associated exception
handling processes, but do not specify which handlers should be used when for what

exceptions. This latter information is captured in a taxonomy in the exception repository
as specializations of the generic exception management meta-process (Figure 5):

exception
types

Exception
Management
Meta-Process

Find
Exceptions

Fix
Exceptions

Collect
Learnings

ID Target
Exceptions

Determine
Exception
Finding
Processes

Enact
Exception
Finding
Processes

Select
Exception
Instances to
Fix

Determine
Exception
Fixing
Processes

Enact
Exception
Fixing
Processes

finding
processes

exception
instances

exception
instances

fixing
processes

Figure 5. The decomposition of the generic exception management meta-process.

The generic exception management meta-process consists of the following subtasks:

♦ Identify target exceptions, which decides which classes of exceptions the process is
going to handle, potentially in a time-varying context-sensitive way.

35

♦ Determine exception finding processes, which determines which exception finding

(i.e. anticipation or detection) handlers will be used to find the exceptions of these
types

♦ Enact exception finding processes, which enacts the exception finding processes

identified in the previous step, producing one or more exception instances
♦ Select exception instances to fix, which sorts and prunes the list of exception instances

so uncovered

♦ Determine exception fixing processes, which determines which exception fixing
(avoidance or resolution) processes will be used to handle these exception instances

♦ Enact exception fixing processes, which enacts the exception fixing processes to

actually (hopefully) complete the handling of the exception(s) detected by the system
♦ Collect learnings, which collects information produced by any of the other steps as

input to any learning capability that the exception management system may have,

presumably changing the operation of the other meta-process steps in the future.

All exception management approaches can be captured, we have found, as specializations

of this generic process, differing only in how the different subtasks are implemented and
connected with each other.

Let us consider two specific examples to make this more concrete. A major distinction
among exception handling approaches is whether they rely on up-front mechanism design
to prevent exceptions from occurring (‘design-time’ exception handling), or whether they

rely on some kind of run-time detection and remediation to deal with them instead. An
example of the first kind of mechanism is the ‘levelled commitment protocol’, an
augmentation of the Contract Net designed to address the ‘agents renege on commitment’

exception, i.e. where agents unilaterally decide to cancel contracts (Sandholm, Sikka et
al. 1999). This protocol relies on a set on de-commitment penalties to entice agents to
avoid dysfunctional instances of this exception (Table 1):

Subtask How Implemented

Identify target

exceptions

The target exception of this mechanism is selected at design

time: ‘agent reneges on commitment’.

Determine exception
finding processes

The exception finding process is fixed at design-time:
“always anticipate this exception”.

Enact exception

finding processes

The exception finding process is enacted at design time.

Select exception
instances to fix

All exceptions are selected.

36

Determine exception

fixing processes

The exception fixing process is fixed at design time to be

“modify protocol to use levelled commitments”.

Enact exception fixing
processes

The exception fixing process is enacted at design time,
producing the enhanced Contract Net protocol.

Collect learnings N/A

TABLE 1. An example of a design-time exception management meta-process.

A run-time exception handling approach being developed by the authors (Dellarocas and
Klein 1999) (Klein and Dellarocas 1999) can, by contrast, be described as follows:

Subtask How Implemented

Identify target

exceptions

The target exceptions are identified at run time by querying

the agents as to which coordination mechanism they will use,
and then querying the exception repository to find all the
characteristic exceptions for this mechanism.

Determine exception
finding processes

Use the exception repository at run time to determine the
exception finding processes appropriate for the target
exceptions, and then select one or more using the handler

process attributes.

Enact exception
finding processes

Enact exception finding processes automatically at run time
by special agents known as ‘sentinels’.

Select exception
instances to fix

Select all exception instances as they occur at run time.

Determine exception

fixing processes

Use a heuristic classification process at run time to traverse a

causal tree to find the root exception (e.g. agent death)
underlying the detected exception (e.g. late task), and then
picks one of the exception fixing processes linked to the

underlying exception, using the handler process attributes.

Enact exception fixing
processes

Enact the exception fixing processes automatically at run time
by special agents known as ‘firefighters’.

Collect learnings Store exception resolution cases at run time for periodic
analysis in order to modify the exception handler process
attributes to enable improved exception handler selection.

TABLE 2. An example of a run-time exception management meta-process.

These examples represent two ends of the spectrum of exception management meta-
processes. One can of course express a whole range of meta-processes, each with

37

different characteristic subtasks drawn from their own portion of the repository’s process

taxonomy. The exception repository process taxonomy includes branches of
specializations for every subtask in the generic exception handling meta-process. The
‘Identify Target Exception’ subtask, for example, includes specializations such as the

following:

[1] Select target exceptions at design time to be <list of exceptions> (as above)

[2] Select target exceptions to be all exceptions listed in the repository for the currently
active coordination mechanisms (also as above)

[3] Ask the system manager to define the target exceptions at run time

[4] Determine target exceptions automatically in a context-sensitive way, e.g. “only look
for fraudulent agent exceptions if the system includes non-certified agents”

This concludes our review of the key concepts underlying the structure of the exception
repository. Let us now turn to considering its potential uses.

2.3. Using The Exception Repository

As noted above, we have identified three important potential uses for the exception

repository: pedagogy, multi-agent systems development, and research:

Pedagogy: We have developed a Web-accessible read-only version of the Process

Handbook that provides access, for pedagogical purposes, to all elements of the exception
repository. This tool allows one to view, in outline form, any of the taxonomies (of
coordination mechanisms, exception types, exception handler processes and exception

management meta-processes) in the repository. One can also bring up a detailed
description for any individual process or exception, with buttons and hotlinks that allow
one to traverse to all related entities (e.g. from exceptions to the handlers for that

exception) (Figure 6):

38

Figure 6: Screen snapshot of the Web-accessible version of the exception repository.

Development: The exception repository supports a simple but powerful methodology for
[re-] designing the exception management procedures used in one’s multi-agent system.

It involves applying the Handbook’s process re-design methodology (Herman, Klein et
al. 1998) to the exception management meta-processes. All of the subtasks in this
process, as we have seen, have multiple alternative specializations (i.e. ways of realizing

that subtask). We can therefore explore many different variations of the exception
management process by systematically varying the alternatives we select for each
subtask.

A tool known as the ‘Process Recombinator’ (Bernstein, Klein et al. 1999), available as
part of the Windows version of the Process Handbook, has been developed to support this

systematic exploration of different subtask combinations (Figure 7).

D NeCfCdpe: EXCEPTION; conc«pCUdhEdCion conHicc HI S

BASIC VIEW I EKTEtJDED VIEW/ ^Q

USES

T EXCEPTION; conccpluaiizarion contlict
5 ATTRIBUTES „
^ <■
2 LOCATION
O
z

SUBACTMTIES

Candicls due tti (paaaihly identical utlily CuncDans liul) diHenng cancepfualiTzlUiiis ai Ihe design Empmcal
studies hflinT Shawn Ihal Ihis kind of canflicl is widespread in caUkliaiatiHT wnrk is imparlanl !□ nuninu2e in
aider In help achieinT eventual consensus, and can lend ta persist because individuals aie aflen iinahle ar danf t
natherta articulate then awn miphcit viewB and canceptuali2ztians [l,",j,4-], and aflen confuse cogmtve
confhds with nuKed-niotvT confhcls

Ramesh, B andK Sengupla (1994-) iManagingCogmtvr andMuid-Motve Confhcls inConcunent
Engineering O Concunenl Engineering Research and Apphcations Special Issue on Conflict Management in
ConcuiientEngmeeiingll(3) 1^3-136.

[I] Brehmer, B andR Haggis (I9S6) itJseof Espetfa in CompIeK Decision MaMng A PaiadEjn foi the
StudyofSlaff Work 0Oigjni2ztianal Behavior A Human Decision Processes 3SC) IS I-195

P] Brehmer, B 11976} iSocialJudgnientTheory and the Analysis of Interpersonal Conflict^ Psychological
BulletmSj 9S5-iaD3

[SjHommaralK omiJ Grassia (I9S5) 'nie Cognitin Sideof Conflict Applied Social Psychology Annual
S Oscamp Beverly Hills, CAUSA Sage fi

[4] Earle, T andC Cvetloivich (I9SS| Risk lutfejnenf Risk Communication and Conflict Management
Human Judgement the SJT View B BrehmerandC Joyce Amsterdam, North-Holland

E^Rptiou telalAl mbaimatioD

Avoided hy coirfpare togmHtf triapi ^

39

Figure 7. Snapshot of the process recombinator.

The Recombinator allows one to select, for each subtask, the alternatives that one is
interested in, and automatically generates all the combinations thereby implied. It is up
the human user, however, to determine which of the candidate exception management

meta-processes so generated are most appropriate for their particular context.

Facilitating Research: An exception repository can serve as a valuable resource for

fostering more effective, accumulative and cross-disciplinary research on exception
management, in several important ways. The cross-disciplinary transfer of ideas is
facilitated because exception management expertise is captured in a single repository

indexed by functional similarity rather than source domain. The taxonomic structure of
the repository facilitates finding gaps in the exception management knowledge. One can,
for example, look for exception types with no associated exception handlers. The Web

version of the exception repository also supports structured discussions by allowing one
to create discussion forums organized around focus topics such as filling in a particular
branch of a taxonomy, adding to a tradeoff table, or detailing a particular process

description. It has been our experience that such foci can be more effective than
unstructured discussions for capturing process knowledge.

Evaluation of The Contributions of This Work

We have been unable to uncover any previous effort to produce a systematic multi-
disciplinary repository of exception handling expertise applicable to multi-agent systems.
There have been a few analogous efforts to capture knowledge about handling the subset

of exceptions known as multi-agent conflicts (Matta 1996) (Castelfranchi 1996) (Ramesh

40

and Sengupta 1994) (Feldman 1985) but they leave out other exception types, and are

lacking key concepts incorporated in the MIT exception repository, such as the
coordination mechanism to exception mapping, the exception management meta-process,
and the specialization hierarchy of exception handling processes.

The MIT exception repository has been evaluated only on a limited internal basis to date,
so it is premature to draw definitive conclusions about its utility for students, researchers

and practitioners. Our experience to date suggests, however, that the repository is likely
to have significant value. The repository currently includes knowledge derived from
roughly 60 research publications, in addition to our own analyses of the exception types

and associated handlers for the contract net (Smith and Davis 1978) (Aryananda 1999),
multi-level coordination (Durfee and Montgomery 1990), and TEAMCORE (Tambe M
1997) (Xu 1999) protocols, representing instances of the most widely-used and studied

classes of multi-agent coordination mechanisms. It is our judgement that the schema
presented above captures all the significant aspects of the exception management
information we have encountered to date. It is also clear, in addition, that the Process

Handbook provides a high level of enabling technology for repository purposes,
including a growing set of sophisticated search, navigation, business process re-design
and structured discussion tools. Previous experience with these tools suggests that they

can be powerful enablers. The Handbook has been successfully used, for example, to
teach classes at the Sloan School of Management as well as Babson College. The
Handbook process redesign methodology has been applied in several domains, most

recently (in cooperation with the consulting firm AT Kearney) to re-design the hiring
processes in a major financial services firm. The participants in this study felt that the
approach was effective in generating a much wider range of novel and promising process

alternatives than would have been uncovered by traditional methods (Herman, Klein et al.
1998).

Future Work

The MIT exception repository is a work in progress. We will continue to add to the
repository content, drawing from multiple disciplines. We plan to explore the use of
additional repository structuring schemes and tools, such as the notion of a “guided tour’

that provides a suggested sequence for traversing the repository links for specific
pedagogical purposes. We are also evolving the repository into the basis of a domain-
independent exception handling service that can be ‘plugged’ in to existing multi-agent

systems (Klein and Dellarocas 1999). This has involved augmenting the repository
schema to capture causal links between different exception types to allow heuristic
classification of failure modes. Our hope is to evolve the exception repository into a self-

sustaining Web-based community resource, which will require addressing technological

41

issues (for example, developing a Web-based authoring tool) as well as sociological

issues (particularly concerning incentives for adding content).

For additional information about this and related work, including eventual access to the

MIT exception repository itself, please see http://ccs.mit.edu/klein/.

Acknowledgements
This work was supported by NSF grant IIS-9803251 (Computation and Social Systems

Program) and by DARPA grant F30602-98-2-0099 (Control of Agent Based Systems
Program). I am grateful for many helpful comments from the members of the MIT Center
for Coordination Science: John Quimby, George Herman, George Wyner, Abraham

Bernstein, and Prof. Thomas Malone.

References

Adamides, E. and D. Bonvin (1993). “Failure recovery of flexible production systems

through cooperation of distributed agents.” Ifip Transactions B: Computer Applications
in Technology 11: 227-38.

Aryananda, L. (1999). An Exception Handling Service for the Contract Net Protocol.

Department of Electrical Engineering and Computer Science. Cambridge MA, MIT.

Auramaki, E. and M. Leppanen (1989). Exceptions and office information systems.
Proceedings of the IFIP WG 8.4 Working Conference on Office Information Systems:

The Design Process., Linz, Austria.

Bansal, A. K., K. Ramohanarao, et al. (1997). Distributed Storage of Replicated Beliefs
to Facilitate Recovery of Distributed Intelligent Agents. Intelligent Agents IV;

Proceedings of ATAL-97. M. P. Singh, A. Rao and M. J. Wooldridge: 77-91.

Bernstein, A., M. Klein, et al. (1999). The Process Recombinator: A Tool for Generating
New Business Process Ideas. Proceedings of the International Conference on Information

Systems, Charlotte, North Carolina USA.

Birnbaum, L., G. Collins, et al. (1990). Model-Based Diagnosis of Planning Failures.
Proceedings of the National Conference on Artificial Intelligence (AAAI-90).

Broverman, C. A. and W. B. Croft (1987). Reasoning About Exceptions During Plan
Execution Monitoring. Proceedings of the National Conference on Artificial Intelligence
(AAAI-87).

42

Burns, A. and A. Wellings (1996). Real-Time Systems and Their Programming

Languages, Addison-Wesley.

Castelfranchi, C. (1996). Conflict Ontology. Proceedings of the Workshop on Conflict
Management, European Conference on Artificial Intelligence (ECAI).

Chia, M. H., D. E. Neiman, et al. (1998). Poaching and distraction in asynchronous agent
activities. Proceedings of the Third International Conference on Multi-Agent Systems,
Paris, France.

Chiu, D. K. W., K. Karlapalem, et al. (1997). Exception Handling in ADOME Workflow
System. Hong Kong, Hong Kong University of Science and Technology.

Decker, K., K. Sycara, et al. (1997). Middle-agents for the Internet. Proceedings of

IJCAI-97, Nagoya, Japan.

Dellarocas, C. and M. Klein (1999). Towards civil agent societies: Creating robust, open
electronic marketplaces of contract net agents. Proceedings of the International

Conference on Information Systems (ICIS-99), Charlotte, North Carolina USA.

Durfee, E. H. and T. A. Montgomery (1990). A Hierarchical Protocol for Coordinating
Multiagent Behaviors.

Feldman, D. C. (1985). “A Taxonomy Of Intergroup Conflict Resolution Strategies.” The
1985 Annual Conference on Developing Human Resources.

Finin, T., Y. Labrou, et al. (1997). KQML as an agent communication language.

Software Agents. J. Bradshaw. Cambridge MA, MIT Press.

Finkelstein, A., D. Gabbay, et al. (1994). “Inconsistency Handling in Multi-perspective
Systems.” IEEE Transactions on Software Engineering 20(8): 569-578.

Firby, R. J. (1987). An Investigation into Reactive Planning in Complex Domains.
Proceedings of AAAI-87.

Fletcher, M. and D. S. Misbah (1999). “Task rescheduling in multi-agent manufacturing.”

Proceedings. Tenth International Workshop on Database and Expert Systems
Applications. DEXA 99: 689-94.

Hägg, S. (1996). A Sentinel Approach to Fault Handling in Multi-Agent Systems.

Proceedings of the Second Australian Workshop on Distributed AI, in conjunction with

43

Fourth Pacific Rim International Conference on Artificial Intelligence (PRICAI'96),

Cairns, Australia.

Herman, G., M. Klein, et al. (1998). A Template-Based Process Redesign Methodology
Based on the Process Handbook. Unpublished discussion paper. Cambridge MA, Center

for Coordination Science, Sloan School of Management, Massachussetts Institute of
Technology.

Hindriks, K., F. de Boer, et al. (1998). “Failure, monitoring and recovery in the agent

language 3APL.” Cognitive Robotics. Papers from the.

Howe, A. E. (1995). “Improving the reliability of artificial intelligence planning systems
by analyzing their failure recovery.” IEEE Transactions on Knowledge and Data

Engineering 7(1): 14-25.

Kaminka, G. and M. Tambe (1997). “Towards social comparison for failure detection.”
Socially Intelligent Agents. Papers from the.

Kaminka, G. A. and M. Tambe (1997). Social Comparison for Failure Detection and
Recovery. Intelligent Agents IV; Proceedings of ATAL-97. M. P. Singh, A. Rao and M.
J. Wooldridge: 127.

Katz, D. M., S. (1993). Exception management on a shop floor using online simulation.
Proceedings of 1993 Winter Simulation Conference - (WSC '93), Los Angeles, CA,
USA, IEEE; New York, NY, USA.

Klein, M. (1998). A Knowledge-Based Approach to Handling Exceptions in Workflow
Systems. Cambridge MA USA, MIT Center for Coordination Science.

Klein, M. and C. Dellarocas (1999). Exception Handling in Agent Systems. Proceedings

of the Third International Conference on AUTONOMOUS AGENTS (Agents '99),
Seattle, Washington.

Malone, T. W., K. Crowston, et al. (1998). “Tools for inventing organizations: Toward a

handbook of organizational processes.” Management Science 45(3): 425-443.

Malone, T. W. and K. G. Crowston (1994). “The interdisciplinary study of
Coordination.” ACM Computing Surveys 26(1): 87-119.

Matta, N. (1996). Conflict Management in Concurrent Engineering: Modelling Guides.
ECAI Workshop on Conflict Management.

44

Mi, P. and W. Scacchi (1993). Articulation: An Integrated Approach to the Diagnosis,

Replanning and Rescheduling of Software Process Failures. Proceedings of 8th
Knowledge-Based Software Engineering Conference, Chicago, IL, USA, IEEE Comput.
Soc. Press; Los Alamitos, CA, USA.

Mullender, S. J. (1993). Distributed systems. New York

Ramesh, B. and K. Sengupta (1994). “Managing Cognitive and Mixed-Motive Conflicts
in Concurrent Engineering.” Concurrent Engineering Research and Applications: Special

Issue on Conflict Management in Concurrent Engineering II(3): 223-236.

Sandholm, T., S. Sikka, et al. (1999). Algorithms for Optimizing Leveled Commitment
Contracts. Proceedings of the International Joint Conference on Artificial Intelligence

(IJCAI-99), Stockholm, Sweden.

Smith, R. G. and R. Davis (1978). “Distributed Problem Solving: The Contract Net
Approach.” Proceedings of the 2nd National Conference of the Canadian Society for

Computational Studies of Intelligence.

Tambe M (1997). “Towards flexible teamwork.” Journal of Artificial Intelligence
Research 7: 83-124.

Traverso, P., L. Spalazzi, et al. (1996). “Reasoning about acting, sensing and failure
handling: a logic for agents embedded in the real world.” Intelligent Agents II. Agent
Theories, Architectures, and Languages. IJCAI`95 Workshop.

Venkatraman, M. and M. P. Singh (1999). “Verifying Compliance with Commitment
Protocols: Enabling Open Web-Based Multiagent Systems.” Autonomous Agents and
Multi-Agent Systems 3(3).

Xu, W. (1999). Generic Exception Analysis in a Dynamic Multi-Agent Environment.
Department of Electrical Engineering and Computer Science. Cambridge MA, MIT.

45

Appendix C: A Knowledge-Based Methodology for Designing Reliable
Multi-Agent Systems

Mark Klein
Massachusetts Institute of Technology

Cambridge MA 02139

(617) 253-6796
m_klein@mit.edu

ABSTRACT
This paper describes a methodology that system designers can use to identify, and find
suitable responses for, potential failure modes (henceforth called ‘exceptions’) in multi-
agent systems.

1. INTRODUCTION

Multi-agent systems must be able to operate robustly despite many possible failure modes
(‘exceptions’) that can occur. Traditionally, multi-agent system (MAS) designers have

largely relied on their experience and intuition in order to anticipate all the ways their
systems can fail, and how these problems can best be addressed. While methodologies
such as failure mode effects analysis (FMEA) do exist [1], they simply provide a

systematic procedure for analyzing systems, without offering specific insights into what
exceptions can occur or how they can be resolved.

This approach is becoming untenable, however, as the scale, heterogeneity and openness
of multi-agent systems increases. Multi-agent systems, with their promise of self-
organized behavior, are being looked to as a way to smoothly and rapidly integrate the

activities of large collections of software entities that may never have worked together
before. The agents in such ‘open’ contexts will not have been designed under centralized
control, and must operate on the infrastructures at hand. Such systems must be able to

operate effectively despite a bewildering range of possible exceptions. We have identified
two main classes of exceptions that can occur in MAS contexts:

- Commitment Violations: This category consists of problems where some entities in
the MAS do not properly discharge their commitments to each other, e.g. when a
subcontractor is overdue with a task, a message is delivered garbled or late, or a host

computer crashes. Even the best production code includes an average of 3 design

46

faults per 1000 lines of code [2], and in open systems we can expect a wide range of

code quality as well as actively malicious agents.

♦ Emergent Dysfunctions: This category consist of dysfunctional behaviors that emerge

from the locally correct behavior of many agents. There are many examples of such
dysfunctions, ranging from social dilemmas such as the ‘tragedy of the commons’ [3],
to wild variations in resource utilization [4] [5], and timing artifacts such as ‘resource

poaching’ (wherein earlier low priority tasks freeze out later high-priority tasks from
access to critical resources) [6]. Such exceptions are especially problematic because
they do not represent errors per se, but rather the unexpected consequences of simple

coordination mechanisms applied in complex environments.

The challenge of identifying exceptions and their resolutions is complicated by the fact

that expertise on this subject is scattered across multiple disciplines that include computer
science, industrial engineering, economics, management science, biology, and the
complex system sciences. MAS designers are thus unlikely to be cognizant of all the

expertise potentially relevant to their tasks.

This paper describes a methodology that multi-agent system (MAS) designers can use to

identify, and find suitable responses for, these potential failures (henceforth called
‘exceptions’). We present the core exception analysis methodology in section 2, and then
describe (in section 3) how an augmentation of the MIT Process Handbook captures

exception handling expertise in a way that can greatly increase the speed and
comprehensiveness of exception analysis.

2. EXCEPTION ANALYSIS
Our exception analysis methodology is based on the insight that coordination
fundamentally involves the making of commitments [7] [8] [9], and that exceptions (i.e.

coordination failures) can as a result be viewed as violations of the commitments agents
require of one another. Exception analysis thus consists of the following steps:

♦ Identify the commitments agents require of one another
♦ Identify the processes by which these commitments are achieved
♦ Identify the ways these processes can violate these commitments (i.e. the exceptions)
♦ Identify the ways these exception can be handled (i.e. the exception handlers)

We consider each of these steps in the paragraphs below. To make the discussion more
concrete, we will describe them in context of the well-known auction-based task-sharing

mechanism known as the “Contract Net” (CNET) [10].

47

In this protocol, an agent (the “contractor”) identifies a task that it cannot or chooses not
to do locally and attempts to find another agent (the “subcontractor”) to perform the task.
It begins by creating a Request For Bids (RFB) which describes the desired work, and

then sending it to potential subcontractors (typically identified using an agent known as a
‘matchmaker’). Interested subcontractors respond with bids (specifying such issues as the
price and time needed to perform the task) from which the contractor selects a winner.

This is thus a first-price sealed-bid auction. The winning agent, once notified of the
award, performs the work (potentially subcontracting out its own subtasks as needed) and
submits the results to the contractor.

Contractor Role Subcontractor Role

Create RFB
(Request For

Bids)

Create Bid

Select Bid

Perform Work

Receive Results

Send RFB

Send Bid

Award Contract

Send Results

Figure 1. The Contract Net Coordination Mechanism.

We can see that there are thus at least three key agent types in CNET: the contractor,
subcontractor, and matchmaker.

Identifying Commitments & Processes: The commitments involved in a coordination
mechanism represent all the places where one agent depends on some other agent to

achieve its goals [7]. They can be identified in a straightforward way by linking
commitments to the agent processes that achieve them, and linking these processes to the
commitments they in turn require to execute successfully. The first commitment in

CNET, for example, is the contractors’ requirement that it have a list of agents potentially
suitable for performing the task T it wishes to subcontract out:

C1:matchmaker receives list of subcontractor agents suitable for task T

48

In CNET, this requirement is discharged by the matchmaking process enacted by the

matchmaker agent:

P1: matchmaker finds matches for skill set S

In order for process P1 to discharge commitment C1, it in turn requires such other
commitments as:

C2:matchmaker receives subcontractor agent skill notifications
C3:matchmaker receives correct skill set S in timely way

C4:matchmaker receives sufficient computational resources to run effectively
C5:matchmaker code was programmed correctly
C6:matchmaker results message is sent quickly and correctly to requesting contractor

agent

Commitment C4, in turn, is achieved by a host computer:

P2: host computer provides computational resources for hosted agents

If we follow this process in sufficient depth we can, in principle, exhaustively identify the
commitments (and associated processes) involved in a given coordination mechanism.

The explicit identification of all commitments is critical because often exceptions occur
because no mechanism was put in place to ensure the satisfaction of some important but
overlooked implicit commitment. Also note that commitments should be enumerated

from the idealized perspective of each agent. For example, in an auction the seller ideally
wants the following commitment:

C6:seller receives bids representing true bidder valuation for good

even though in many situations the bidder may have no intention of fulfilling this

commitment (e.g. in auctions where true-value revelation is not the dominant strategy).
Many important exceptions represent violations of such ideal-case commitments.

Identifying Commitment Violations (Exceptions): The next step is to identify, for each

commitment, how that commitment can be violated by the process selected to achieve it,
i.e. what the possible exceptions are. An initial set of exceptions can be identified simply
as the logical negations of the commitment itself. For example, the commitment to send a

message consists of three components: delivering the right message to the right place at

49

the right time. Any process selected to achieve these commitments thus has three possible

failure modes:

E1: sender delivers the wrong message (e.g. the message is garbled)

E2:sender delivers message to the wrong place
E3:sender delivers message at the wrong time (e.g. the message arrives late or never)

Not all exception types, however, can be identified so simply. Process P2 above, for
example, can violate its commitments due to exceptions that include:

E4:host computer experiences a denial of service attack
E5:host computer is infected by a virus

The range of possible exception types seems to be limited only by human imagination.
This introduces a experiential component into exception analysis; one must rely on one’s
previous experience to identify possible exception types, and an exhaustive identification

may not be possible

Identifying Exception Handlers: Once we have identified the exceptions that potentially

characterize a given MAS process, we are ready to identify possible processes for
handling these exceptions. Exception E1, for example, can be detected by the process:

P3: sender performs error-detecting checksum on message contents

and it can be resolved by:

P4: sender re-sends message

As with exceptions themselves, the range of possible exception handling processes
appears to be limited only by human creativity. Also note that exception handling
processes, just like any other MAS process, can of course require their own commitments

and face their own exceptions.

This exception analysis procedure is systematic but potentially very time-consuming, and
it still requires that MAS designers have a substantial amount of expertise about possible

exceptions and how they can be handled, so the possibility of missing important
exceptions or valuable exception handling techniques remains.

3. EXPLOITING A KNOWLEDGE BASE

50

This challenge has led us to explore whether it is possible to systematically accumulate

exception-related expertise so that designers can benefit from ideas drawn from other
designers, and from multiple disciplines, in order to perform exception analysis more
quickly and completely. Our approach has been to build upon the MIT Process

Handbook, a process knowledge repository which has been under development at the
Center for Coordination Science (CCS) for about 10 years [11]. The key concept
underlying the Handbook is that processes can be arranged into a taxonomy, with very

generic processes at one extreme and increasingly specialized processes towards the
other. Such taxonomies have two useful properties. One is that attributes of generic
entities tend to be inherited by their ‘specializations’, so one can capture useful

generalizations that apply to a wide range of processes. The other is that similar entities
(e.g. processes with similar purposes) tend to appear close to one another.

We extended this schema to allow it to capture the results of applying the exception
analysis methodology described above. This was accomplished (see [12] [13]) by
defining:

♦ a taxonomy of commitment types, where commitments can be linked to the processes
that require them as well as the processes that achieve them, and

♦ a taxonomy of exception types, where exceptions can be linked to the processes they
impact as well as the processes appropriate for handling them.

Using this extended schema, we have developed a knowledge base that consists of the
results of applying our exception analysis methodology to a range of more or less abstract
MAS coordination processes and their component sub-processes. We have also

implemented a web-based interface for accessing and editing the contents of this
knowledge base. The examples presented in this paper are all drawn from this knowledge
base.

A MAS designer can use such a knowledge base to facilitate exception analysis as
follows:

- Consult the knowledge base to find the generic processes that subsume, or closely
match, the processes used in the MAS of interest.

- Identify which of the exceptions listed for those generic processes in the knowledge

base appear to be important for this particular MAS.
- For each of these exceptions, identify which of the exception handler(s) described in

the knowledge base seem best suited for this MAS. These exception handlers should,

51

of course, be submitted to the same exception analysis procedures as the other MAS

processes.

The power of this approach comes from the fact that a relatively small corpus of abstract

commitments, exceptions and process models is, when represented in this way, capable
of capturing a surprisingly high proportion of the exception handling expertise we need.
We describe how this works in more detail below.

Finding the matching generic processes: The taxonomic organization of processes in the
Handbook knowledge base makes it straightforward to find matching generic process(es).

The procedure is similar to finding a book in a library. One simply traverses down the
subject taxonomy from the top, selecting the most appropriate sub-categories at each step,
until the desired section is reached.

We have developed a taxonomy of the most widely-used MAS coordination
processes, ranging from market mechanisms to distributed planning to game-theoretic
and stigmergic approaches. We have focused our initial efforts on auctions because their

wide applicability, scalability, simplicity and well-understood properties make them
widely used by MAS designers. Every auction mechanism captured in the Handbook
includes a textual description as well as an enumeration of its subtasks, required

commitments, and the commitments it achieves.
Using this information, one can readily determine which processes in the

taxonomy match the process of interest. Imagine for example that a MAS designer has

developed a task allocation scheme wherein subcontractor agents send in sealed bids in
order to compete for subtasks. To find a matching generic process, he or she would start
at the ‘resource sharing process’ branch of the taxonomy, and traverse down from there,

quickly reaching the process taxonomy branch devoted to auction mechanisms:

Figure 2. A portion of the auction mechanism taxonomy.

I -i^T Difcfc lYiln; pfcni ^

52

Using this portion of the taxonomy, the designer can quickly determine that his or her

task allocation scheme is an instance of the generic Contract Net process described in the
knowledge base. In addition to enabling the quick identification of relevant exception
types (see below), finding the matching generic processes can increase the completeness

of the MAS model: one can look at the components and requirements in the generic
process and check whether any are missing in the current MAS model.

Finding Applicable Exceptions: Once the matching generic processes have been
identified, we can then identify the exceptions that the MAS is potentially prone to. This
is straightforward because each process in the knowledge base is linked directly to its

characteristic exceptions. All auctions, for example, are a specialization of the abstract
‘pull-based sharing’ process, which represents mechanisms wherein resources, e.g.
subcontractor agents, are allocated based on consumer requests rather centralized

budgeting. If we consult the Handbook knowledge base we find that pull-based sharing is
prone to such ‘emergent dysfunction’ exceptions as “resource poaching” and
“synchronized jump thrashing”:

Figure 3. An example of exceptions for a generic process.

The fact that auction mechanisms are prone to such emergent dysfunctions is a
potentially powerful and easily missed insight. Auction mechanisms are typically
designed by economists interested in equilibrium behavior, and implemented by

computer scientists, while the dynamics of resource sharing are studied by researchers in
the complex systems field, which grew mainly out of physics. This is an example,
therefore, of how a taxonomic approach, based as it is on the identification of powerful
generalizations, can foster the cross-disciplinary transfer of insights about exception

handling challenges and solutions.

Ikn^AfaihL^ jlpjcalMtarj j I

■^T: puU^baaed sharing?

■ kiMM ^ Lcjj^Mi ^ EMMiimk j
COnkifMMw^ ^ fkM ^ l^PjtlQj ^ Pi rill ft rf JiMllU n

■ExCCptHHU

> t^B iHitoi^ M^WM* Miimri j

■ OD

53

Finding Applicable Handlers: Once one has determined which exceptions are important

for a particular MAS, the next step is to identify the appropriate exception handlers. This
is straightforward because exceptions in the Handbook knowledge base are linked
directly to the exception handling processes appropriate for them. Our current knowledge

base, for example, notes that the exception “Synchronized Jump Thrashing” (where
resource consumers generate oscillatory or even chaotic resource utilization behavior due
to delayed resource quality information) can be detected using signal processing

techniques and resolved by carefully timed modification of resource availability
messages [4].

There are four classes of exception handlers in the knowledge base, divided into two
pairs. If a exception has not yet occurred, we can use:

[1] Exception anticipation processes, which uncover situations where a given class of
exception is likely to occur. Resource poaching, for example, can be anticipated when
there is a flood of long duration tasks requiring scarce, non-preempting

subcontractors to perform them.
♦ Exception avoidance processes, which reduce or eliminate the likelihood of a given

class of exception. Resource poaching can be avoided, for example, by allowing

subcontractors to preempt their current tasks in favor of higher priority pending tasks.

If the exception has already occurred, we can use:

♦ Exception detection processes, which detect when an exception has actually occurred.
Some exceptions, such as bidder collusion for example, are difficult to anticipate but

can be detected post-hoc by looking at bid price patterns.
♦ Exception resolution processes, which resolve an exception once it has happened.

One resolution for bidder collusion, for example, is to penalize and/or kick out the

colluding bidders and re-start the auction for the good in question.

The exceptions in our knowledge base are arranged, like processes, into a taxonomic

structure:

54

Figure 4. A fragment of the exception taxonomy.

Exceptions are grouped into classes that share similar underlying causes and thus similar
exception handling techniques. This implies that when a new exception handling process
is entered into the knowledge base, it can be placed in a way that makes explicit the full

range of exceptions to which it is applicable.

Where multiple alternative handler processes exist for addressing a particular exception,

the Handbook knowledge base allows one to describe the pros and cons of the handlers
using tradeoff tables. The taxonomic structure of the knowledge base also facilitates the
design of innovative handler processes through re-combining elements of existing

handlers [14].

Whatever handlers we select can themselves be made subject to the exception analysis

approach described above in order to further increase the robustness of the MAS.
Reputation mechanisms, for example, have been put forth as handlers for many classes of
agent commitment violation exceptions. Our knowledge base captures the fact that such

mechanisms can be sabotaged by such exceptions as dishonest ratings.

4. CONTRIBUTIONS
Limited space has only allowed us to sketch out the knowledge-based exception analysis
approach we have been developing. We hope, however, that the key benefits have been
made clear. Existing exception analysis techniques leave the identification of possible
exceptions and handlers up to the MAS designers themselves. The knowledge-based

exception analysis procedure we describe, by contrast, makes it possible to systematically
enumerate all the points where exceptions can occur, quickly identify what exceptions
may appear at those points, and suggest how they may be handled. Because this

knowledge base represents the accumulation of expertise drawn from many different

D > -^g rrECTiWttTfrf^lfrTd tFTWteron J

D -^-^J rii^nprd id.i^ii.-*vi<Hnart ^

a - ^rn u-ajimj|^jl ti ntMirtMimJ ^ita j

D > ■."T iiritiTTr
Q I v--^ rilhiMhlTtoiJ ^
D ■ .Jg IWLQMJf ■#

D I r!-fi tarrinfinnc

55

designers and disciplines, it has the potential of identifying exception types and handler

techniques that may otherwise be overlooked by the MAS designer.

We have applied our tools and knowledge base to exception analysis in a range of

domains including futures trading, multi-agent system task allocation, and concurrent
engineering. Our preliminary assessment is that the methodology can be effective in
helping designers design more reliable multi-agent systems.

5. FUTURE WORK
We are continuing to accumulate a knowledge base of exception types and handlers,

currently focusing on market-based sharing, collaborative synthesis, and emergent
dynamical dysfunctions. We are also developing software agents that use this knowledge
base to do real-time exception detection and intervention in multi-agent systems. For

additional information about this and related work, see http://ccs.mit.edu/klein/.

6. ACKNOWLDGEMENTS
This work was supported by the DARPA CoABS program as well as the NSF
Computational and Social Systems program. The author gratefully acknowledges the
important contributions made by Chrysanthos Dellarocas, George Herman, Thomas

Malone, Simon Parsons, John Quimby, Juan-Antonio Rodriguez-Aguilar, and others.

REFERENCES
[1] Hunt, J., D.R. Pugh, and C.J. Price. Failure mode effects analysis: a practical

application of functional modeling. Applied Artificial Intelligence, 1995. 9(1): p. 33-
44.

[2] Gray, J. and A. Reuter. Transaction Processing : Concepts and Techniques. Morgan
Kaufmann series in data management systems. 1993, San Mateo, Calif. USA: Morgan
Kaufmann Publishers. xxxii, 1070.

[3] Hardin, G.,The Tragedy of the Commons. Science, 1968. 162: p. 1243 - 1248.
[4] Huberman, B.A. and D. Helbing. Economics-based optimization of unstable flows.

Europhysics Letters, 1999. 47(2): p. 196-202.

[5] Sterman, J.D. Learning in and about complex systems. 1994, Cambridge, Mass.:
Alfred P. Sloan School of Management, Massachusetts Institute of Technology. 51.

[6] Chia, M.H., D.E. Neiman, and V.R. Lesser. Poaching and distraction in
asynchronous agent activities. In Proceedings of the Third International Conference

on Multi-Agent Systems. 1998. Paris, France.

56

[7] Singh, M.P. An Ontology for Commitments in Multiagent Systems: Toward a

Unification of Normative Concepts. Artificial Intelligence and Law, 1999. 7: p. 97-
113.

[8] Jennings, N.R. Coordination Techniques for Distributed Artificial Intelligence, in

Foundations of Distributed Artificial Intelligence, G.M.P. O'Hare and N.R. Jennings,
Editors. 1996, John Wiley & Sons. p. 187-210.

[9] Gasser, L. DAI Approaches to Coordination, in Distributed Artificial Intelligence:

Theory and Praxis, N.M. Avouris and L. Gasser, Editors. 1992, Kluwer Academic
Publishers. p. 31-51.

[10] Smith, R.G. and R. Davis. Distributed Problem Solving: The Contract Net

Approach. Proceedings of the 2nd National Conference of the Canadian Society for
Computational Studies of Intelligence, 1978.

[11] Malone, T.W., et al. Tools for inventing organizations: Toward a handbook of

organizational processes. Management Science, 1999. 45(3): p. 425-443.
[12] Klein, M. and C. Dellarocas. A Knowledge-Based Approach to Handling

Exceptions in Workflow Systems. Journal of Computer-Supported Collaborative

Work. Special Issue on Adaptive Workflow Systems., 2000. 9(3/4).
[13] Klein, M. Towards a Systematic Repository of Knowledge About Managing

Collaborative Design Conflicts. in Proceedings of the International Conference on AI

in Design (AID-2000). 2000. Boston MA: Kluwer Academic Publishers.
[14] Bernstein, A., M. Klein, and T.W. Malone. The Process Recombinator: A Tool for

Generating New Business Process Ideas. in Proceedings of the International

Conference on Information Systems (ICIS-99). 1999. Charlotte, North Carolina USA.

57

Appendix D: Handling Resource Use Oscillation in Open Multi-Agent
Systems

Mark Klein
Massachusetts Institute of Technology

NE20-336

Cambridge MA 02132
Tel: (617) 253-6796
Fax: (617) 452-3231

m_klein@mit.edu

Yaneer Bar-Yam
New England Complex Systems Institute

24 Mt. Auburn Street

Cambridge, MA 02138
Tel: (617) 547-4100
Fax: (617) 661-7711

yaneer@necsi.org
The Challenge

The convergence of ubiquitous electronic communications such as the Internet, electronic
agents acting as proxies for human consumers, and web/grid service standards such as

XML are rapidly ushering in a world where hordes of software agents, acting for humans,
can rapidly select among multitudes of competing providers offering almost every
imaginable service. This is inherently an “open” world, a marketplace where the agents

operate as peers, neither designed nor operated under central control. Such a world offers
the potential for unprecedented speed and efficiency in getting work done.

In such open peer-to-peer systems we face, however, the potential of highly

dysfunctional dynamics emerging as the result of many locally reasonable agent
decisions [1]. Such “emergent dysfunctions” can take many forms, ranging from
inefficient resource allocation [2] to chaotic inventory fluctuations [3] [4] to non-

convergent collective decision processes [5]. This problem is exacerbated by the fact that
agent societies operate in a realm whose communication and computational costs and
capabilities are radically different from those in human society, leading to collective

behaviors with which we may have little previous experience. It has been argued, for
example, that the 1987 stock crash was due in part to the action of computer-based
“program traders” that were able to execute trade decisions at unprecedented speed and

volume, leading to unprecedented stock market volatility [6].
Let us focus on one specific example of emergent dysfunctional behavior: resource

use oscillation in request-based resource sharing. Imagine that we have a collection of

consumer agents faced with a range of competing providers for a given resource (e.g. a
piece of information such as a weather report, a sensor or effector, a communication link,
a storage or computational capability, or some kind of data analysis). Typically, though

not exclusively, the utility offered by a resource is inversely related to how many
consumers are using it. Each agent strives to select the resource with the highest utility
(e.g. response time or quality), and resources are allocated first-come first-served to those

58

who request them. This is a peer-to-peer mechanism: there is no one ‘in charge’. This

kind of resource allocation is widely used in settings that include fixed-price markets,
internet routing, and so on. It is simple to implement, makes minimal bandwidth
requirements, and - in the absence of delays in resource status information – allows

consumers to quickly converge to a near optimal distribution across resources (see figure
1 below).

Consumers, however, will often have a somewhat delayed picture of how busy each

resource is. Agents could imaginably poll every resource before every request. This
would cause, however, a N-fold increase in number of required messages for N servers,
and does not eliminate the delays caused by the travel time for status messages. In a

realistic open system context, moreover, consumers probably cannot fully rely on
resource providers to accurately characterize the utility of their own offerings (in a way
that is comparable, moreover, across providers). Resource providers may be self-

interested and thus reluctant to release utilization information for fear of compromising
their competitive advantage. In that case, agents will need to estimate resource utilization
using other criteria such as their own previous experience, consulting reputation services,

or watching what other consumers are doing. Such estimates are almost certain to lag at
times behind the actual resource utility.

When status information is delayed in some way, we find that resource use

oscillations emerge, potentially reducing the utility achieved by the consumer agents far
below the optimal value predicted by an equilibrium analysis [7].What happens is the
following. Imagine for simplicity that we have just two resources, R1 and R2. We can

expect that at some point one of the resources, say R1, will be utilized less than the other
due to the ebb and flow of demand. Consumer agents at that point will of course tend to
select R1. The problem is that, since their image of resource utilization is delayed, they

will continue to select R1 even after it is no longer the less utilized resource, leading to an
“overshoot” in R1’s utilization. When the agents finally realize that R2 is now the better
choice, they will tend to select R2 with the same delay-induced overshoot. The net result

is that the utilization of R1 and R2 will oscillate around the optimal equilibrium value.
The range of the oscillations, moreover, increases with the delay, to the extent that all the
consumers may at times select one server when the other is idle:

59

-5

0

5

10

15

20

25

0 2000 4000 6000 8000 10000

Time

R1

R2

Max

Delay = 50 Delay = 100Delay = 0 Delay = 150

Figure 1. Utilization of two equivalent resources with and without delays in status
information.

Oscillations have two undesirable effects. One is that they can reduce the utility received
by consumers below optimal values. The other is that they can increase the variability of

the utility achieved by the consumers, which may be significant in domains where
consistency is important. The precise impact of oscillations is driven by the relationship
between resource utilization and utility. Let us consider several scenarios.

Imagine we have grocery store customers (consumers) choosing from two checkout
lines (resources). Their utility is given by how long they have to wait. The time needed to
check out each customer is not affected by the length of a line, so the wait at each line is

negatively and linearly impacted by its length:

0

2

4

6

8

10

12

14

16

Wait(R1)
Wait(R2)
Total wait

R2 idle R1 idleBoth R1 and R2 busy

Number of customers using R2
0 5 10 15

Figure 2: Average grocery store checkout times as a function of distribution across lines.

60

When both checkout lines are busy, oscillations in the distribution of customers across
lines do not affect average check out times. The longer waits faced by customers in one
line are exactly offset by the shorter waits enjoyed by the customers in the other line. The

variance of checkout times will, of course, be wider if there are oscillations. Note, also,
that if the oscillations are so severe that one line goes idle while the other has multiple
customers, the average waiting times will increase because only one resource is active.

Now consider, by contrast, movie goers faced with a choice of theatres to attend.
Each movie goer wants the best seat possible. The fuller the theatre, the poorer the seats
that remain, so the utility of the seats is negatively and non-linearly impacted by the

number of people using the theatre:

0

2

4

6

8

10

12

14

16

0 0.2 0.4 0.6 0.8 1 1.2

Fraction of movie goers using theatre R1

U(R1)
U(R2)

Total

Figure 3: The value of movie seats as a function of distribution across theatres2.

There is one optimal distribution of movie goers across theatres (50-50 in this case), and
oscillations in the actual distribution reduce the average utility because much of the time
is spent at a non-optimal distribution. Oscillations increase the variance in this case as

well.
A third scenario involves TV viewers (the consumers) with a choice of shows (the
resources) to watch. The utility of a show for a given consumer is not impacted by who

else happens to be watching it, so it is a constant function of the utilization. In this case
we would expect no persistent oscillations to occur, because changing viewership does
not impact the movement of viewers among shows. Any variations that do occur would,

in any case, have no impact on the utility received by the consumers.
The last scenario involves club goers (consumers) with a choice of night clubs

(resources) they can attend. The value of a club to them is given by how many other

2 For this example, the utility of the seats provided by a theatre was given by U(ƒ) = 20*ƒ – 10*ƒ2, where ƒ is the

fraction of moviegoers who selected that theatre.

61

people are there. The resource utility is thus positively impacted by the number of

consumers. In this scenario, there will be no persistent oscillations because whatever club
achieves an initial advantage in number of participants will eventually get all of the club
goers.

We can therefore distinguish four scenarios for request-based resource sharing. All
are potentially important in open agent system contexts. Network routers operate using
the “Grocery Checkout” model. A broadcast operates using the “TV show” model.

Auctions arguably fit into the “Nightclub” model. And providers of varying utility
resources such as sensors, effectors, or storage capacity fit into the “Movie Theatre”
model. These scenarios vary however in their susceptibility to the emergent dysfunction

of resource use oscillation. The key factor concerns how the utility offered by a resource
varies with its utilization:

Linear Relationship Non-linear Relationship
Positive Impact Nightclub

Zero Impact TV Show

Negative Impact Grocery Checkout Movie Theatre

Table 1. The cases for how resource utility is affected by utilization.

In two of these cases, where resource utility is a constant or positive function of resource
utilization, resource use oscillation will not occur and/or have no impact. In the

remaining scenarios, however, oscillations can occur and negatively impact the
consistency and/or average value of the utility achieved by consumers. We will confine
our attention to these latter cases in the remainder of the paper.

Previous Work
What can be done about resource use oscillation in request-based systems? This problem

has been studied in some depth, most notably in the literature on “minority games” [8]
[9]. This line of work has investigated how to design agents so that their local decisions
no longer interact to produce substantial resource use oscillations. One example involves

designing agents that make resource selection decisions using historical resource
utilization values [7]. If the agents look an appropriate distance into the past, they will be
looking at the resource state one oscillation back in time, which should be a good
approximation of the current resource utilization. The agent’s delay parameter is tuned

using survival of the fittest: agents with a range of delay factors are created, and the ones
that get the highest utility survive and reproduce, while others do not. With this in place
the resource utilization, under some conditions, settles down to near-optimal values.

62

Any approach predicated on the careful design of agent resource selection strategies,

however, faces a fundamental flaw in an open systems context. In open systems, we do
not control the design or operation of the consumer agents and can not be assured that
they will adopt strategies that avoid emergent dysfunctions. Our challenge, therefore, is

to find an approach that moderates or eliminates oscillatory resource utilization dynamics
without needing to control the design or operation of the consumer agents.

Our Approach: Stochastic Request Rejection
Our approach to this problem is inspired by a scheme developed to improve the allocation
of network router bandwidth (the resource) to client computers (the consumers). Routers

currently operate as follows <ref>. Clients send packets to routers, and routers then
forward the packets on towards their final destination. Every router has a buffer where it
stores the packets that arrive when the router is busy. If any packets arrive when the

buffer is full, the routers send a ‘packet drop’ message to the originating clients, at which
point they immediately drop their data send rate to some minimal value, and then
gradually increase it. This scheme is prone to inefficient router use oscillations because

clients can synchronize their data send rate changes. If several get a packet dropped
message from the router at about the same time, they all slow down and potentially
under-utilize the router until their data rates ramp up enough to overload it, at which point

they all drop their rates again.
A scheme called “Random Early Detect” (RED) has been proposed to address this

problem [10]. The idea is simple. Rather than dropping packets only when the buffer is

full, the router drops them stochastically with a probability proportional to how full the
buffer is (e.g. 50% full results in a 50% chance of a packet being dropped). RED is
successful at damping oscillations in router utilization because it de-synchronizes the data

send rate changes across clients. While it does increase client-side message traffic by
increasing the number of reject messages, it has no negative impact on total throughput
because it is very unlikely to cause the buffers to empty out and leave a router needlessly

unutilized.
We have adapted this idea for request-based resource sharing in open agent systems.

We call our technique ‘stochastic request rejection’, or SRR. Imagine that every resource

stochastically rejects new requests with a probability proportional to its current load. This
can be implemented by the resource itself, or by ‘sentinel’ agents that track the number of
consumers each resource is currently serving, and stochastically intercept/reject consumer
requests with a probability proportional to that load. When oscillations occur, we would

predict that the increased level of rejections from the currently more heavily utilized
resource will shift the requests to the less-utilized resource, thereby damping the
oscillations and ameliorating their negative impact on the utility achieved by consumer

agents.

63

Experimental Evaluation: The Grocery Checkout Case
Our first set of tests studied the value of SRR when applied to “grocery checkout”
resource sharing scenario. The experimental setup was as follows. There were 20
consumers and 2 resources. Each consumer sends a ‘request’ message to the resource it

believes has the smallest backlog, waits until it receives a ‘job completed’ message from
the resource, and then after a randomized delay sends the next ‘request’ message. The
consumers’ estimate of a resources’ utility may lag the correct value. Resources may

either take on requests or reject them. If a consumer receives a ‘reject’ message, it sends
the request to the other resource. Messages take 20 units of time to travel, resources
require 20 units of time to perform each task, and consumers have a normally distributed

delay at 40 ticks, with a standard deviation of 10, between receiving one result and
submitting the next request. The aggregate results reported below represent averages over
100 simulation runs, each 4000 ticks long, and all our conclusions were statistically

significant at p < 0.01.
The impact of applying SRR in this scenario can be visualized as follows:

-5

0

5

10

15

20

25

0 2000 4000 6000 8000 10000

Time

R1
R2
Max

No delay
Delayed with

SRR
No delay

with SRR
Delayed

Figure 4. The impact of SRR on resource oscillations.

In this simulation run, the agents initially made their resource requests using current
information on the length of each resources’ backlog. As we can see, in this case the

resource utilization clusters tightly around the optimal distribution of 50-50 across
resources. At T = 2000, the backlog information provided to the consumers was made
100 time units out of date, rapidly leading to large resource use oscillations. At T = 4000,

SRR was turned on, resulting in substantial damping in the magnitude of these
oscillations. At T = 6000, the delay was removed but SRR was left on, whereupon the

64

resource utilization returns to clustering tightly around the optimal distribution. The

aggregate results confirm the patterns suggested by this example:

Null SRR
No delay 160 +/- 4

0%
160 +/- 6
33%

Short Delay (50) 160 +/- 7

0%

160 +/- 6

34%

Long Delay (100) 167 +/- 8
0%

161 +/- 6
35%

Table 2. Task completion times +/ 1 standard deviation, as well as reject rates,
for different delays, with and without SRR.

As we would expect for the grocery store scenario, the variability in task completion
times without SRR increases with the delay in status information, and if the delay is long

enough, the average task completion time can increase as well. If we turn on SRR, we
find that it significantly reduces the variability in task completion times in the delayed
cases, and almost eliminates the increase in task completion times in the long delay case.

Rejecting some requests can thus actually speed up task completion when delay-induced
oscillations occur. But this does come at a cost. Message traffic is increased: roughly 1/3rd

of the consumer requests elicit a reject message and must be re-sent. The variability of

task completion times in the no delay case is also increased by SRR. This is because
many resource requests that would otherwise simply have been queued up incur the
additional delay of being rejected and re-submitted. The absolute size of these effects can

be expected to vary with the ratio of task and messaging times. Ideally, we would be able
to enable SRR only when it is needed, so we can avoid incurring its costs in the no-
oscillation contexts where it is not helpful. We will return to this point later.

Experimental Evaluation: The Movie Theatre Case
The parameters for the movie theatre simulations were the same as the grocery store case,

except for the following changes. Resources do not have a waiting line, but instead offer
concurrent access to 15 different ‘slots’ with varying utility (the first slot has value 15,
the second has value 14, and so on). Tasks take 160 ticks to perform. The aggregate
results for this case are as follows:

65

Null SRR
No delay 9.6 +/- 1.5

0%

331

9.7 +/- 1.2
59%

303

Short Delay (50) 9.1 +/- 1.9
0%

332

9.8 +/- 1.4
60%

303

Long Delay (100) 7.6 +/- 2.1
3%

331

9.6 +/- 1.4
66%

300

Table 3. Average quality +/- 1 standard deviation, as well as reject rates and number of

completed requests, for different delays, with and without SRR.

As we can see, SRR is also effective in this scenario. Delay-induced oscillations cause

consumers to often select the resource that is actually more heavily utilized and thus
lower in quality, resulting in a reduction of the average achieved quality. Using SRR
eliminates this problem, but with the cost of increasing message traffic, as well as

reducing the rate of task completion (since every time a task is rejected a delay is
incurred while the request is re-submitted). As in the “grocery checkout” case, we would
ideally prefer to be able to apply SRR selectively, so we do not incur these costs when

oscillations are not occurring.

Avoiding Needless Rejects Via Selective SRR
It is in fact straightforward to use spectral analysis to determine if persistent oscillations
are occurring in resource utilization. In our implementation, each resource periodically
(every 20 ticks) sampled its utilization and submitted the last 30 data points to a Fourier

analysis. SRR was turned on if above-threshold values were encountered in the power
spectrum so determined. The threshold was determined empirically. This approach
proved to be successful. In the grocery checkout scenario, selective SRR was as effective

as SRR in maintaining throughput and task duration consistency while avoiding increases
in message traffic in the no-delay case:

66

Null SRR Selective SRR
No delay 160 +/- 4

0%
160 +/- 6
33%

160 +/- 4
0%

Short Delay (50) 160 +/- 7
0%

160 +/- 6
34%

160 +/- 6
29%

Long Delay (100) 167 +/- 8

0%

161 +/- 6

35%

161 +/- 6

33%

Table 4. Task completion times +/ 1 standard deviation, as well as reject rates,

for different delays, with and without [selective] SRR.

In the movie theatre scenario, selective SRR was as effective as SRR in maintaining task

quality while almost eliminating increases in message traffic and task completion time in
the no-delay case:

Null SRR Selective SRR
No delay 9.6 +/- 1.5

0%

331

9.7 +/- 1.2
59%

303

9.5 +/- 1.4
6%

327

Short Delay (50) 9.1 +/- 1.9
0%

332

9.8 +/- 1.4
60%

303

9.6 +/- 1.5
41%

311

Long Delay (100) 7.6 +/- 2.1
3%

331

9.6 +/- 1.4
66%

300

9.3 +/- 1.6
54%

305

Table 5. Average quality +/- 1 standard deviation, as well as reject rates and number of

completed requests, for different delays, with and without [selective] SRR.

This simple spectral analysis approach can be fooled, of course, into triggering SRR

when resource use oscillations are due to variations in aggregate demand, as opposed to
status information delays. But this problem is easily addressed: whenever a resource
detects significant usage oscillations, it analyzes the correlation of it’s utilization with
that of the other resource. Variations in aggregate demand will show a positive

correlation, while delay-caused oscillations show a negative one. We have implemented
this approach and found that it successfully avoids triggering SRR for aggregate demand
variations while remaining effective in responding to delay-induced oscillations.

67

Contributions and Next Steps
We have presented a promising approach for mitigating the deleterious effects of delay-
induced resource-use oscillations on request-based resource sharing. It differs from
previous techniques in that it is designed to be appropriate for the important domain of

open systems, where we can not rely on being able to control the design or operation of
the resource consumers. The key elements of this approach involve the stochastic load-
proportional rejection of resource requests, triggered selectively when spectral and cross-

resource correlation analyses reveal that delay-induced oscillations are actually taking
place.

Next steps for this work include evaluating the selective SRR approach when there

are more than two resources. This research is part of the author’s long-standing efforts to
develop a systematic enumeration of the different multi-agent system exception types as
well as how they can be addressed in open systems contexts [11] [12]. See

http://ccs.mit.edu/klein/ for further details on this work.

Acknowledgements
This work was supported by the NSF Computational and Social Systems program as well
as the DARPA Control of Agent-Based Systems program.

References
1. Jensen, D. and V. Lesser. Social pathologies of adaptive agents. In the proceedings of
Safe Learning Agents Workshop in the 2002 AAAI Spring Symposium. 2002: AAAI Press.

2. Chia, M.H., D.E. Neiman, and V.R. Lesser. Poaching and distraction in
asynchronous agent activities. In the proceedings of Proceedings of the Third
International Conference on Multi-Agent Systems. 1998. Paris, France.

3. Youssefmir, M. and B. Huberman. Resource contention in multi-agent systems. In the
proceedings of First International Conference on Multi-Agent Systems (ICMAS-95).
1995. San Francisco, CA, USA: AAAI Press.

4. Sterman, J.D., Learning in and about complex systems. 1994, Cambridge, Mass.:
Alfred P. Sloan School of Management, Massachusetts Institute of Technology. 51.
5. Klein, M., H. Sayama, P. Faratin, and Y. Bar-Yam, The Dynamics of Collaborative

Design: Insights From Complex Systems and Negotiation Research. Concurrent
Engineering Research & Applications, 2003. In press.
6. Waldrop, M., Computers amplify Black Monday. Science, 1987. 238: p. 602-604.
7. Hogg, T., Controlling chaos in distributed computational systems. SMC'98

Conference Proceedings, 1998(98CH36218): p. 632-7.
8. Challet, D. and Y.-C. Zhang, Emergence of Cooperation and Organization in an
Evolutionary Game. arXiv:adap-org/9708006, 1997. 2(3).

68

9. Zhang, Y.-C., Modeling Market Mechanism with Evolutionary Games. arXiv:cond-

mat/9803308, 1998. 1(25).
10. Braden, B., D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V.
Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J.

Wroclawski, and L. Zhang, Recommendations on Queue Management and Congestion
Avoidance in the Internet. 1998, Network Working Group.
11. Klein, M. and C. Dellarocas. Exception Handling in Agent Systems. In the

proceedings of Proceedings of the Third International Conference on AUTONOMOUS
AGENTS (Agents '99). 1999. Seattle, Washington.
12. Klein, M., J.A. Rodriguez-Aguilar, and C. Dellarocas, Using Domain-Independent

Exception Handling Services to Enable Robust Open Multi-Agent Systems: The Case of
Agent Death. Autonomous Agents and Multi-Agent Systems, 2003. 7(1/2).

69

Appendix E: Using Domain-Independent Exception Handling Services to
Enable Robust Open Multi-Agent Systems: The Case of Agent

Death

MARK KLEIN, PHD
Center for Coordination Science
Massachusetts Institute of Technology

m_klein@mit.edu
http://ccs.mit.edu/klein/

JUAN ANTONIO RODRIGUEZ-AGUILAR, PHD

Center for Coordination Science
Massachusetts Institute of Technology
Jarjar@mit.edu

http://ccs.mit.edu/ases/jar/

CHRYSANTHOS DELLAROCAS, PHD
Sloan School of Management

Massachusetts Institute of Technology
dell@mit.edu
http://ccs.mit.edu/dell

Abstract
This paper addresses a critical question involved in the development of multi-agent
systems: how can we create robust systems out of the often unreliable agents and
infrastructures we can expect to find in open systems contexts? We propose an approach

to this problem based on distinct exception handling (EH) services that enact
coordination protocol-specific but domain-independent strategies to monitor agent
systems for problems (‘exceptions’) and intervene when necessary to avoid or resolve

them. The value of this approach is demonstrated for the ‘agent death’ exception in the
well-known Contract Net protocol; we show through simulation experiments that the EH
service approach provides substantially improved performance compared to existing

approaches in a way that is appropriate for open multi-agent systems.

70

1. The Challenge: Enabling Robust Open Multi-Agent Systems

“Open systems ... represent arguably the most important application for multi-agent
systems" [1]

This paper addresses one simple question: how can we develop robust multi-agent
systems out of the often unreliable (buggy, malicious, or simply “dumb”) agents and

infrastructures we can expect to encounter in open system contexts? This is becoming an
increasingly critical question because of emerging changes in the way human
organizations work. Globalization, enabled by ubiquitous telecommunications, has

increasingly required that organizations be assembled and re-configured within small
time frames, often bringing together partners that have never worked together before.
Examples of this include international coalition military forces, disaster recovery

operations, open electronic marketplaces and virtual supply chains [2] [3] [4]. Multi-
agent systems (MAS) represent one of the most promising approaches for supporting
these kinds of applications, because of their ability to use multi-agent coordination

protocols to dynamically self-organize themselves as their problems and constituent
agents change [5] [1]. A critical open challenge remains, however. The vast majority of
MAS work to date has considered well-behaved agents running on reliable infrastructures

in relatively simple domains [6]. These have been almost exclusively closed systems, i.e.
where the agents and their infrastructure are developed and enacted under centralized
control. It is clear however that these assumptions do not hold for the open contexts

described above, where agents can come from multiple sources and must operate on the
infrastructures at hand [7]. For these contexts we can expect, in contrast, to find:

♦ Unreliable Infrastructures. In large distributed systems like the Internet,
unpredictable host and communication problems can cause agents to slow down or
die unexpectedly, messages to be delayed, garbled or lost, etc. These problems

become worse as the applications increase in size, due to the increase in potential
points of failure.

♦ Non-compliant agents. In open systems, agents are developed independently, come
and go freely, and can not always be trusted to follow the rules properly due to bugs
or even outright malice. This can be expected to be especially prevalent and important
in contexts such as electronic commerce or military operations where there may be

significant incentives for fraud or malice.

♦ Emergent dysfunctions. Emerging multi-agent system applications are likely to
involve complex and dynamic interactions that can lead to emergent dysfunctions,

71

such as chaotic behavior, with the multi-agent coordination mechanisms that have

proved most popular to date [8] [9] [10]. This is especially true since agent societies
operate in a realm where relative communication and computational costs and
capabilities can be radically different from those in human society, leading to

behaviors with which we have little previous experience. It has been argued, for
example, that the 1987 stock crash was due in part to the action of computer-based
“program traders” that were able to execute trade decisions at unprecedented speed

and volume, leading to unprecedented stock market volatility [11].

All of these departures from “ideal” multi-agent system behavior can be called

exceptions, and the results of inadequate exception handling include the potential for poor
performance, system shutdowns, and security vulnerabilities.

2. Our Approach: Distinct Domain-Independent Exception Handling Services

It is certainly imaginable that agents could be individually elaborated so that they could

handle all exceptions they are apt to face, and most agent system exception handling
research has in fact taken this direction. Even one of the first MAS coordination
protocols, the Contract Net, included an “immediate response bid’, which allowed an

agent to determine whether the exception of getting no bids for its tasks was due to all
eligible subcontractor agents being busy (in which case a retry is appropriate) or due to
the outright lack of subcontractors with the necessary skills (in which case presumably

the system manager/user should be informed) [12]. This “survivalist” approach to multi-
agent exception handling faces, however, a number of serious shortcomings:

First of all, it greatly increases the burden on agent developers. It is predicated upon
implementing potentially complicated and carefully coordinated exception handling
behaviors in all agents. Developers must anticipate and correctly prepare for all the

exceptions the agent may encounter, which is problematic at best since the agent’s
operating environments may be difficult to anticipate. Making changes in exception
handling behavior is difficult because it potentially requires coordinated changes in

multiple agents created by different developers. Agents become harder to maintain,
understand and reuse because a potentially large body of exception handling code
obscures the relatively simple normative behavior of an agent.

Perhaps more seriously, this approach can result in poor exception handling performance.
In open systems it is always possible that some agents will not comply properly with
these more sophisticated protocols or may violate some of their underlying assumptions.

Some exception handling approaches, for example, are based on game-theoretic incentive

72

analyses [13] that assume all agents are fully rational and share a particular class of utility

function (typically profit maximization), but this obviously may not always be the case.
Some agents may be buggy, face severe computational limitations that preclude full
rationality, or have radically different utility functions (e.g. cause as much damage to a

particular vendor as possible). All agent interactions are potentially slowed down by the
overhead incurred by the more heavyweight ‘exception-savvy’ protocols. Some kinds of
interventions (such as “killing” a broken or malicious agent) may in addition be difficult

to implement because the agents do not have the established legitimacy needed to apply
such interventions to their peers. Finally, finding the appropriate responses to some kinds
of exceptions (notably emergent exceptions) often requires that the agents achieve a more

or less global view of the multi-agent system state, which is notoriously difficult to create
without heavy bandwidth requirements.

It is in order to address these limitations that we have been defining an approach that
enhances MAS robustness by offloading exception handling from problem solving agents
to distinct, domain-independent services. We call this the “citizen” approach by analogy

to the way exceptions are handled in human society. In such contexts, citizens typically
adopt relatively simple and optimistic rules of behavior, and rely on a whole host of
social institutions (the police, lawyers and law courts, disaster relief agencies, the

Security and Exchange Commission, the Better Business Bureau, and so on) to handle
most exceptions. This is generally a good tradeoff because such institutions are able, by
virtue of specialized expertise, widely accepted legitimacy, and economies of scale, to

deal with exceptions more effectively and efficiently than individual citizens, while
making relatively few demands of most agents (e.g. pay your taxes, obey police officers,
report crimes).

The key insight that makes the “citizen” approach workable in the multi-agent system
context is the simple but powerful notion that highly reusable, domain-independent

exception handling expertise can be usefully separated from the knowledge used by
agents to do their “normal” work. There is substantial evidence for the validity of this
claim. Early work on expert systems development revealed that it is useful to separate

domain-specific problem solving and generic control knowledge [14, 15]. Analogous
insights were also confirmed in the domains of collaborative design conflict management
[16, 17] and workflow exception management [18]. In our work to date we have found
that every coordination protocol has its own characteristic set of domain-independent

exceptions, which in turn can be mapped to domain-independent strategies potentially
applicable for handling (anticipating and avoiding, or detecting and resolving) them. We
shall see some examples of such strategies below; for others please see [19] [20].

73

3. Case Study: Handling Agent Death in the Contract Net Protocol

Let us illustrate this approach by considering how it can be applied to an important
exception scenario: handling agent death in the Contract Net protocol (henceforth called

CNET) [12]. CNET is a market-based protocol for allocating tasks to agents. It is
probably the most widely-used MAS coordination protocol and has been applied
successfully to many domains including manufacturing control [21], tactical simulations

[22], transportation scheduling [23], and distributed sensing [24].

The CNET protocol operates as follows (Figure 1):

Contractor Role Subcontractor Role

Create RFB
(Request For

Bids)

Create Bid

Select Bid

Perform Work

Receive Results

Send RFB

Send Bid

Award Contract

Send Results

Figure 1. A simple version of the Contract Net protocol.

An agent (hereafter called the “contractor”) identifies a task that it cannot or chooses not

to do locally and attempts to find another agent (hereafter called the “subcontractor”) to
perform the task. It begins by creating a Request For Bids (RFB) which describes the
desired work, and then sending it to potential subcontractors (typically identified using a

matchmaker that indexes agents by the skills they claim to have). Interested
subcontractors respond with bids (specifying such issues as the time needed to perform
the task) from which the contractor selects a winner. The winning agent, once notified of

the award, performs the work (potentially subcontracting out its own subtasks as needed)
and submits the results to the contractor. CNET is prone to a wide range of potential
exceptions from all three of the categories (unreliable infrastructures, non-compliant

agents, emergent dysfunctions) described above [25].

74

Let us consider what happens when a CNET agent ‘dies’. Agent death can be common in

a large distributed system. Even the most carefully crafted code has been estimated to
include an average of three bugs, mostly intermittent ones, per 1000 lines of code [26],
and this does not account for the possibility that malicious agents may intentionally ‘kill’

themselves in order to sabotage the efforts of their customers. If a CNET agent dies there
are several immediate consequences. If the agent is acting as a subcontractor, its
customer obviously will not receive the results it is expecting. In addition, if the agent has

subcontracted out one or more subtasks, these subtasks and all the sub-sub-… tasks
created to achieve them become “orphaned”, in the sense that there is no longer any
purpose for them, so they are uselessly tying up potentially scarce resources. Finally, if

the system uses a matchmaker, it will continue to offer the now dead agent as a candidate
(a “false positive”), resulting in wasted message traffic and perhaps fostering the illusion
that agents with particular skills are available in a multi-agent system when they no

longer are. CNET agent death presents a surprisingly rich source of challenges and helps
reveal, we believe, many of the important issues involved in exception handling in open
agent systems.

The standard mechanism used to handle agent death in CNET, as in many distributed
protocols, is a classic “survivalist” approach: timeout/retry. If no results are received by

the deadline the subcontractor promised, a contractor will re-start the subcontracting
process for that task, sending a new RFB. This approach does work but rather
inefficiently, since it does not eliminate orphaned tasks, does not remove false positives

from the matchmaker, and is prone to an “timeout cascade” effect, wherein the death of
an agent performing a subtask can cause cascading timeouts and retries for its customers,
the customers of its customers, and so on, all the way up to the CNET agent at the top of

the task decomposition tree, resulting in needless delays and wasted work.

Contrast this with a “citizen”-style approach to handling the agent death exception. In our

implementation of this approach, when an agent joins the MAS, the EH service begins
periodic polling of the agent. If an agent dies (does not respond to polling in a timely
way), the EH service takes a series of coordinated actions to resolve the problem

♦ It notifies the matchmaker that this agent is dead and should therefore be removed
from the list of available subcontractors. This handles false matchmaker positives.

♦ If the dead agent was performing tasks for some customer(s), the EH service

immediately asks these customers to re-allocate the tasks assigned to the dead agent.
This avoids the “timeout cascade” effect described above, since contractors only
reallocate tasks when the subcontractor has actually died.

75

♦ If the dead agent had allocated tasks to other agents, the EH service tries to find new

customers for these orphaned tasks by acting in effect as a proxy. The proxy waits for
an RFB for the orphaned tasks, and submits a bid that is likely to be highly
competitive since the tasks are either already in process or actually completed. This is

a reasonable strategy in domains where there is a standardized task decomposition, so
the replacement for the dead agent is apt to require the same subtasks that the dead
agent did. If the proxy wins the anticipated RFB, it forwards task results as they are

generated. Otherwise it keeps responding to RFBs until it wins or the task results
become obsolete. This strategy thus minimizes the work wasted on orphaned tasks. In
domains where the proxy approach in inappropriate (e.g. results get obsolete very

quickly, or there is no standard task decomposition) the EH service can simply kill all
orphaned tasks.

♦ An agent reliability database is notified so it can keep up to date information about

the mean time between failures for each agent type.

In addition to this, the EH service can help avoid agent death problems exception via bid

filtering. Whenever a contractor sends out an RFB, the EH service can transparently filter
out the bids that come from the most failure-prone of the bidders, thereby reducing the
probability that a task will be assigned to an agent that dies during its enactment.

The EH service makes two assumptions about agents in order to provide these
capabilities. One is that it can transparently monitor and, if necessary, modify the

domain-independent aspects (message types as well as task and agent IDs) of all inter-
agent messages. This is straightforward to achieve if the EH service is realized using
“sentinels” integrated into the communications infrastructure (Figure 2).

Agent AgentAgent

Sentinel SentinelSentinel

Reliability
Database

Inter-agent messages

EH messages

Figure 2: Sentinel architecture for EH service.

76

In this architecture, every agent (including the matchmaker if any) is “wrapped” with a
sentinel through which all of its in- and out-going message traffic is routed. Sentinels can
communicate with each other as well as with the agent reliability database. The

distributed nature of this architecture allows us to avoid performance and reliability
bottlenecks. The overhead of passing messages through sentinels can be minimized if
sentinels are located on the same hosts as their agent “clients”. Most EH messages go

between a client and its sentinel; messages are interchanged between sentinels only when
killing orphaned tasks. The reliability database is accessed only when an agent dies or a
sentinel is filtering a set of bids, and standard distributed database techniques can be used

to avoid bottlenecks and reliability problems in accessing/updating this information [26].
Sentinel death can be dealt with using techniques such as that described in [27].

The second assumption is that, when agents enter a multi-agent system supported by the
EH service, they indicate the kinds of exception handling behavior they can support. This
‘EH signature’ specifies for that agent how agent death can be detected (i.e. whether or

not that agent responds to the “are you alive?” message), how dead subcontractor
problems are resolved (i.e. whether or not an agent responds to the “resend RFB”
message), how dead customer problems are resolved (i.e. whether the agent allows

orphaned task proxying and/or responds to the “cancel task” message), and how dead
subcontractor problems are avoided (i.e. whether or not the agent allows bid filtering).
‘Full’ citizens support all options, while pure survivalists support none. Other agent types

come somewhere in between. This allows the EH services to account for agent
heterogeneity.

Note that we are not claiming that this particular architecture and set of agent death
handling strategies is the optimal, or even the only way in which agent death can be
offloaded to an EH service. Our claim, rather, is that, at least for this particular exception,

the citizen approach can provide significant advantages over survivalist approaches to
exception handling in open multi-agent systems.

4. Evaluating the Exception Handling Services Approach

We ran a series of experiments to test this claim in a multi-agent system running the
CNET protocol. The experiments all take place in a discrete event based MAS simulator

built on top of the Swarm Simulation System [28]. The scenario consists of several dozen
CNET agents, one per host, interacting over a reliable network. Contractor agents send
out an RFB with a specified timeout period: potential subcontractors bid only if they

become available during this period (i.e. subcontractors perform only one task at a time).

77

Bids are binding, which means that subcontractors will bid on a new RFB only after the

timeout for its pending bid expired without an award being received (presumably because
some other subcontractor won the task). Contractors select the winning bids based solely
on how quickly the bidders claimed they could perform the task. Contractors re-send

RFBs if no bids have been received by the timeout period (presumably because no
subcontractors with the needed skills were available at that time). This CNET protocol is
modeled on the one described in [12] and was chosen because it is simple and was shown

to represent a reasonable design tradeoff in several test domains.

We designed the experiments to evaluate exception handling performance in a range of

domain types. Three independent variables were selected to capture what we judged to be
key domain-dependent elements affecting exception handling performance: task tree
topology, task length, and agent scarcity. Task completion performance was measured for

four different agent configurations, whose parameters are summarized below:

Configuration # of Agents Task duration3

Short tasks, abundant subcontractors 50 10

Short tasks, scarce subcontractors 16 100

Long tasks, abundant subcontractors 50 10

Long tasks, scarce subcontractors 16 100

In all of these configurations there were three top-level contractors, each executing a loop
wherein they announce a new top-level task, wait for bids, award the contract to the best

bidder, wait to receive the results and then repeat the above steps. Every top-level task
involved the completion of task trees with depth 4 and branching factor 2, thereby
requiring the combined contribution of 15 agents (Figure 3)

Top-level
contractor

Level-2
subcontractors

Level-3
subcontractors

Level-4
subcontractors

Figure 3. Top-level tasks require the creation of a 4-level task tree.

3 The task duration is the number of cycles that a contractor has to spend after it has received the results of its

subcontracted tasks, before it returns its result to its contractor. The task duration given is relative to the RFB
timeout: short tasks are only 10 times longer than the RFB timeout, while long tasks are 100 times longer.

78

This allowed us to study the effects of the EH service for tree topologies of differing

depths, ranging from “flat” (one level of decomposition, as in a client-server setup) to
“deep” (three levels of decomposition, as we might expect to find in more complex
information supply chains). Tree width was not varied because it does not affect total task

completion time for any particular agent death instance. To simplify the experiment, all
subcontractors were capable of performing any task in a given task tree.

In our initial set of experiments, three simulation runs were performed for each of the
four configurations described above:

♦ Failure-free environment (baseline case)
♦ Failure-prone environment, “survivalist” agents using timeout/retry.
♦ Failure-prone environment, “citizen” agents fully supported by the EH services

In the failure-prone cases, subcontractor agents were divided into three reliability classes.
All subcontractor agents had a “lifespan” (time until death) selected randomly from a

geometric distribution with mean time between failures (MTBF) equal to 10 times the
task duration for low reliability agents, 50 times the task duration for medium reliability
agents, and 100 times the task duration for high reliability agents. When an agent dies, a

new one with the same skills and reliability class but a different unique ID is created and
registered with the matchmaker. This is done to keep the subcontractor population from
shrinking over the course of the experiment, thereby emulating a large and dynamic agent

pool where the population of subcontractors remains roughly constant. All simulations
were run until a 90% confidence interval could be computed for each of the completion
time estimates with a width of less than 15 percent of the estimated mean.

Figure 4 below summarizes the mean task completion times for deep task trees,
normalized relative to the failure-free (baseline) case, for survivalist and citizen agents in

each of the four agent configurations described above.

79

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

abundant long abundant short scarce long scarce short

survivalist
citizen

Figure 4. Normalized mean task completion times.

As expected, citizen agents supported by the EH services produced task completion times
in agent death affected trees greatly superior to those of survivalist agents. In the deep

tree case shown above, mean completion times for citizen agents were as much as 3.4
times faster than for survivalist agents. Remarkably, citizen agents gave times for failure-
affected trees no more than 27% longer than the failure-free mean. The advantage of

citizen agents was much less dramatic for shallow task trees (not shown above): they
were only about 50 to 60% faster than survivalist agents. This is because the ‘timeout
cascade’ effect that plagues survivalist but not citizen agents only appears for deeper task

decompositions. The size of the citizen advantage was only mildly affected by task length
and subcontractor scarcity for the configurations tested.

We also noted that citizen agents had, for most conditions, a much smaller variation in
task completion times than did survivalist agents (Figure 5):

80

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

abundant long abundant short scarce long scarce short

failure free
survivalist
citizen

Figure 5. Normalized standard deviations of task completion times.

The variance reduction represents, we believe, a significant benefit since in many

environments we can expect that consistency will be equally as important as efficiency. A
system with a low mean completion time, but where some task instances may take a very
long time to complete is bound to make some users extremely unhappy.

The benefits of the citizen approach are achieved in a way that is well-suited to open
multi-agent systems. Recall that the most salient aspect of open systems is that we can

make only minimal assumptions about the agents that compose it, since they were not
developed under centralized control. Agents are thus likely to be heterogeneous with
respect to their exception handling behavior. The EH service can work with a broad range

of such behaviors by using the ‘EH signature’ concept described above. It requires at
most that agents support three very simple directives (“are you alive?”, “resend RFB”,
and “cancel-task”) and can provide significant support for agents (e.g. survivalists) that

implement none of these messages, since bid filtering and orphaned task proxying
operate in a way that is completely transparent to the affected agents. The EH service can
use timeouts to detect agent death if the agent does not support the “are you alive?”

message, avoiding timeout cascades by being aware of the inter-agent task commitment
structure. The EH service can notify an agents’ customer to resend an RFB if the agent

81

itself does not support the “resend-RFB” message. Finally, if an agent does not support

“cancel-task”, at worse we are unable to avoid wasting some computational resources.
We can expect that the degree of benefits derived from the EH service will be a function
of which subset of the full ‘EH signature’ the agents support, which is born out by our

experiments (Figure 6):

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

survivalist survivalist
with bid
filtering

minimal citizen
(polling only)

minimal citizen
with bid
filtering

full citizen

Series1

Figure 6. Normalized mean task completion times as a function of EH options supported.

These experiments explored the mean task completion time performance for the “long
tasks, abundant subcontractors, deep trees” configuration for agents that support differing
subsets of the maximal EH contract, normalized relative to the failure free case. As we

can see, mean completion times decrease as the scope of the EH signature supported by
the agent increases, and the ‘full citizen’ (which supports polling, proxying and bid
filtering) is the fastest.

5. Contributions of this Work

The contributions of this work can be viewed at two levels. Narrowly construed, this
work presents a powerful new approach for improving failure tolerance in open systems
contexts. There is of course a substantial body of previous work on failure tolerance in

82

distributed systems, which has produced such useful techniques such as mirroring and

rollbacks [29] [30], but these techniques achieve generality at the cost of efficiency and
are not fully suited to open system contexts. Mirroring techniques are only appropriate
for agents that were designed explicitly to keep a backup process in a synchronized state,

but this clearly may not be true for all agents in open systems. Rollback techniques
assume that all components cooperate with rollback directives if any failures are detected,
and tend to be highly inefficient for deep task decompositions because full rollbacks can

discard a lot of already completed work in such contexts. Our approach in effect
prescribes a set of techniques, including carefully delimited partial rollbacks in addition
to proxying and bid filtering, specifically designed to operate efficiently for open systems

of agents that use CNET (or similar market-based mechanisms) for task allocation.
Kumar et al. [27] present an approach that focuses on replacing dead middle agents with
their interchangeable peers. This does not address, however, many of the problems (e.g.

orphaned tasks) or potential solutions (e.g. proxying or bid filtering) that arise in task
allocation processes, and is a closed system approach as it makes the strong assumption
that all middle agents participate fully in a joint intentions framework.

More broadly speaking, this work presents a detailed example of the potential value of a
domain-independent EH services approach to increasing robustness in open agent

systems. This represents, we believe, a significant contribution to previous efforts in this
area. As we have already noted, there has been relatively little previous work on multi-
agent exception handling, and much of it has taken a “survivalist” approach with the

important shortcomings identified above. Several lines of research have begun to explore
concepts similar to those presented here, but none as far as we know have explored the
combination of domain-independent exception handling implemented as distinct services.

Hägg [6] presents the concept of sentinel agents; these are distinct services, which
monitor the agent system and intervene when necessary by selecting alternative problem
solving methods, excluding faulty agents, or reporting to human operators. This approach

is not domain-independent, however: sentinels must be customized for each new
application. Kaminka et al [31] present Social Attentive Monitoring (SAM), an exception
handling approach wherein agents detect exceptions via uncovering violations of

normative relationships with their teammates, and exploit a teamwork model to diagnose
and fix these problems. This approach does have generic elements, but it is limited to
teamwork protocols like TEAMCORE [32] and requires domain-dependent
customization of the exception detection procedures. Horling et al. [33] have explored the

use of domain-independent tools to detect and resolve the exception wherein the agents
have a harmfully inaccurate picture of the inter-agent dependencies in their current
context. This approach is limited to a single exception type, however, and like SAM

applies to just one class of coordination protocol. Venkatraman et al [34] describe a

83

generic approach to uncovering agents that do not comply with coordination protocols.

This approach only addresses one subclass of exception types, however, and does not
include a resolution component. Related work can also be found if we go farther afield
into such disciplines as planning, distributed systems, manufacturing process control, and

the like. There has also been substantial work in the planning and robotics communities
on dealing with unexpected world states [35] [36] [37] [38] [39] [40]. This work focuses
almost exclusively on exceptions (e.g. failed operations, unexpected events) in the world

manipulated by the agents, and not on exceptions concerning the agents themselves.
Finally, there has been substantial work on detecting and resolving exceptions in
computer-supported cooperative work [41] [42] [43] [44] [45] and manufacturing control

[46] [47] [48] but this has been applied to a very limited range of domains (e.g. just
flexible manufacturing cell control) and exception types (e.g. just inappropriate task
assignments).

6. Future Work

We plan to pursue two concurrent lines of development in this work. One line will
include defining and evaluating individual techniques for handling other important open
MAS exceptions within the EH service framework. We are currently focusing on

exceptions characteristic of market-based resource allocation protocols, including
reputation fraud (i.e. an exception that occurs due to agents trying to ‘fool’ a reputation
server), contract violations, and emergent dynamical dysfunctions (i.e. thrashing).

A second line of work will be to increase the power and scope of the domain-independent
EH services that apply these individual techniques in the context of a particular MAS. In

a MAS it will often be necessary to diagnose a particular presenting problem (e.g. a late
task) in order to determine the underlying cause (e.g. agent death, overloaded agents, or
missing agent skills) and thereby identify the appropriate exception handler to use.

Model-based diagnosis is potentially applicable, but must face novel challenges because,
by definition, agents in open systems are black boxes for which we may not have the
detailed behavioral models assumed by current model-based diagnosis techniques.

The long-term goal is to integrate these efforts to create domain-independent knowledge-
based exception handling services with the following functional architecture (Figure 7):

84

Instrum
entation

Diagnosis

Resolution

Failure
mode KB

Exception
type KB

Resolution
plan KB

S

S

Problem solving agents Exception handling agents

Normal behavior

Exception
symptoms

Resolution
actions

Instrum
entation

Diagnosis

Resolution

Failure
mode KB

Exception
type KB

Resolution
plan KB

S

S

Problem solving agents Exception handling agents

Normal behavior

Exception
symptoms

Resolution
actions

Figure 7. Functional architecture for the envisioned exception handling service.

In this vision, when new agents enter a MAS they register with the EH service,

establishing a ‘social contract’ that specifies their normative behavior, rights and
responsibilities within the system. The EH service then consults its failure mode
knowledge base to determine the appropriate techniques needed to avoid or detect the

characteristic exceptions this agent may face or create. When an exception does occur,
the EH service diagnosis the underlying cause, and then selects and enacts the techniques
suitable for resolving this particular problem.

Acknowledgements

This work was supported by NSF grant IIS-9803251 (Computation and Social Systems
Program) and by DARPA grant F30602-98-2-0099 (Control of Agent Based Systems
Program).

References

[1] M. Wooldridge, N. R. Jennings, and D. Kinny, "A Methodology for Agent-

Oriented Analysis and Design," presented at Proceedings of the Third Annual
Conference on Autonomous Agents (AA-99), Seattle WA USA, 1999.

[2] "Proceedings of the International Workshop on Knowledge-Based Planning for

Coalition Forces,". Edinburgh, Scotland, 1999.

85

[3] K. Fischer, J. P. Muller, I. Heimig, and A.-W. Scheer, "Intelligent agents in

virtual enterprises.," presented at Proceedings of the First International
Conference on the Practical Application of Intelligent Agents and Multi-Agent
Technology (PAAM’96), Blackpool, UK, 1996.

[4] M. B. Tsvetovatyy, M. Gini, B. Mobasher, and Z. Wieckowski, "MAGMA: An
agent-based virtual marketplace for electronic commerce," Applied Artificial
Intelligence, vol. 11, pp. 501-524, 1997.

[5] N. R. Jennings, K. Sycara, and M. Wooldrige, "A Roadmap of Agent Research
and Development," Autonomus Agents and Multi-Agent Systems, vol. 1, pp. 275-
306, 1998.

[6] S. Hägg, "A Sentinel Approach to Fault Handling in Multi-Agent Systems,"
presented at Proceedings of the Second Australian Workshop on Distributed AI,
in conjunction with Fourth Pacific Rim International Conference on Artificial

Intelligence (PRICAI'96), Cairns, Australia, 1996.

[7] C. Hewitt and P. D. Jong, "Open Systems," Massachusetts Institute of
Technology, MIT AI Lab Technical Report 1982.

[8] M. Youssefmir and B. Huberman, "Resource contention in multi-agent systems,"
presented at First International Conference on Multi-Agent Systems (ICMAS-95),
San Francisco, CA, USA, 1995.

[9] J. D. Sterman, Learning in and about complex systems. Cambridge, Mass.: Alfred
P. Sloan School of Management, Massachusetts Institute of Technology, 1994.

[10] M. H. Chia, D. E. Neiman, and V. R. Lesser, "Poaching and distraction in

asynchronous agent activities," presented at Proceedings of the Third
International Conference on Multi-Agent Systems, Paris, France, 1998.

[11] M. Waldrop, "Computers amplify Black Monday," Science, vol. 238, pp. 602-

604, 1987.

[12] R. G. Smith and R. Davis, "Distributed Problem Solving: The Contract Net
Approach," Proceedings of the 2nd National Conference of the Canadian Society

for Computational Studies of Intelligence, 1978.

[13] T. Sandholm, S. Sikka, and S. Norden, "Algorithms for Optimizing Leveled
Commitment Contracts," presented at Proceedings of the International Joint

Conference on Artificial Intelligence (IJCAI-99), Stockholm, Sweden, 1999.

[14] T. R. Gruber, "A Method For Acquiring Strategic Knowledge," Knowledge
Acquisition, vol. 1, pp. 255-277, 1989.

86

[15] J. A. Barnett, "How Much Is Control Knowledge Worth? A Primitive Example,"

Artificial Intelligence, vol. 22, pp. 77-89, 1984.

[16] M. Klein, "Conflict Resolution in Cooperative Design," in PhD thesis. Computer
Science. Urbana-Champaign, IL.: University of Illinois, 1989.

[17] M. Klein, "Supporting Conflict Resolution in Cooperative Design Systems," IEEE
Systems Man and Cybernetics, vol. 21, pp. 1379-1390, 1991.

[18] M. Klein, "Exception Handling in Process Enactment Systems," MIT Center for

Coordination Science, Cambridge MA, CCS Working Paper 203, December
1997 1997.

[19] M. Klein and C. Dellarocas, "Domain-Independent Exception Handling Services

That Increase Robustness in Open Multi-Agent Systems," Massachusetts Institute
of Technology, Cambridge MA USA, Center for Coordination Science Working
Paper CCS-WP-211, http://ccs.mit.edu/papers/pdf/wp211.pdf, May 2000 2000.

[20] M. Klein and C. Dellarocas, "Towards a Systematic Repository of Knowledge
about Managing Multi-Agent System Exceptions," Massachusetts Institute of
Technology, Cambridge MA USA, ASES Working Paper ASES-WP-2000-01,

http://ccs.mit.edu/klein/papers/ASES-WP-2000-01.pdf, February 2000 2000.

[21] A. Baker, "Complete manufacturing control using a contract net: a simulation
study," presented at Proceedings of the International Conference on Computer

Integrated Manufacturing, Troy New York USA, 1988.

[22] K. Boettcher, D. Perschbacher, and C. Wessel, "Coordination of distributed
agents in tactical situations," Ieee, pp. 1421-6, 1987.

[23] M. Bouzid and A.-I. Mouaddib, "Cooperative uncertain temporal reasoning for
distributed transportation scheduling," Proceedings International Conference on
Multi Agent Systems, 1998.

[24] R. G. Smith and R. Davis, "Applications Of The Contract Net Framework:
Distributed Sensing," Distributed Sensor Nets: Proceedings of a Workshop, 1978.

[25] C. Dellarocas and M. Klein, "An Experimental Evaluation of Domain-

Independent Fault Handling Services in Open Multi-Agent Systems," presented at
Proceedings of The International Conference on Multi-Agent Systems (ICMAS-
2000), Boston, MA, 2000.

[26] J. Gray and A. Reuter, Transaction Processing : Concepts and Techniques. San
Mateo, Calif. USA: Morgan Kaufmann Publishers, 1993.

87

[27] S. Kumar, P. R. Cohen, and H. J. Levesque, "The Adaptive Agent Architecture:

Achieving Fault-Tolerance Using Persistent Broker Teams," presented at
Proceedings of the International Conference on Multi-Agent Systems (ICMAS-
2000), Boston MA USA, 2000.

[28] N. Minar, R. Burkhart, C. Langton, and M. Askenazi, "The Swarm Simulation
System: A Toolkit for Building Multi-Agent Systems," Santa Fe Institute, Santa
Fe, New Mexico, USA Working Paper 96-06-042, 1996.

[29] A. Burns and A. Wellings, Real-Time Systems and Their Programming
Languages: Addison-Wesley, 1996.

[30] S. J. Mullender, Distributed systems, 2nd ed. New York; Wokingham, England ;

Reading, Mass.: ACM Press. Addison-Wesley Pub. Co., 1993.

[31] G. A. Kaminka and M. Tambe, "What is Wrong With Us? Improving Robustness
Through Social Diagnosis," presented at Proceedings of the 15th National

Conference on Artificial Intelligence (AAAI-98), 1998.

[32] M. Tambe, "Towards flexible teamwork," Journal of Artificial Intelligence
Research, vol. 7, pp. 83-124, 1997.

[33] B. Horling, V. Lesser, R. Vincent, A. B. A, and P. Xuan, "Diagnosis as an
Integral Part of Multi-Agent Adaptability," University of Massachussets at
Amherst Department of Computer Science, Amherst, Massachussets, Technical

Report 99-03, 1999.

[34] M. Venkatraman and M. P. Singh, "Verifying Compliance with Commitment
Protocols: Enabling Open Web-Based Multiagent Systems," Autonomous Agents

and Multi-Agent Systems, vol. 3, 1999.

[35] P. Traverso, L. Spalazzi, and F. Giunchiglia, "Reasoning about acting, sensing
and failure handling: a logic for agents embedded in the real world," Intelligent

Agents II. Agent Theories, Architectures, and Languages. IJCAI`95 Workshop,
1996.

[36] A. E. Howe, "Improving the reliability of artificial intelligence planning systems

by analyzing their failure recovery," IEEE Transactions on Knowledge and Data
Engineering, vol. 7, pp. 14-25, 1995.

[37] L. Birnbaum, G. Collins, M. Freed, and B. Krulwich, "Model-Based Diagnosis of

Planning Failures," presented at Proceedings of the National Conference on
Artificial Intelligence (AAAI-90), 1990.

88

[38] C. A. Broverman and W. B. Croft, "Reasoning About Exceptions During Plan

Execution Monitoring," presented at Proceedings of the National Conference on
Artificial Intelligence (AAAI-87), 1987.

[39] R. J. Firby, "An Investigation into Reactive Planning in Complex Domains,"

presented at Proceedings of AAAI-87, 1987.

[40] K. Hindriks, F. de Boer, W. van der Hoek, and J.-J. Meyer, "Failure, monitoring
and recovery in the agent language 3APL," Cognitive Robotics. Papers from the,

1998.

[41] P. Mi and W. Scacchi, "Articulation: An Integrated Approach to the Diagnosis,
Replanning and Rescheduling of Software Process Failures," presented at

Proceedings of 8th Knowledge-Based Software Engineering Conference,
Chicago, IL, USA, 1993.

[42] D. K. W. Chiu, K. Karlapalem, and Q. Li, "Exception Handling in ADOME

Workflow System," Hong Kong University of Science and Technology, Hong
Kong, technical report Technical Report, 1997.

[43] M. Klein, "A Knowledge-Based Approach to Handling Exceptions in Workflow

Systems," MIT Center for Coordination Science, Cambridge MA USA, CCS
Working Paper 203, April 1998 1998.

[44] E. Auramaki and M. Leppanen, "Exceptions and office information systems,"

presented at Proceedings of the IFIP WG 8.4 Working Conference on Office
Information Systems: The Design Process., Linz, Austria, 1989.

[45] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh, "Inconsistency

Handling in Multi-perspective Systems," IEEE Transactions on Software
Engineering, vol. 20, pp. 569-578, 1994.

[46] M. Fletcher and D. S. Misbah, "Task rescheduling in multi-agent manufacturing,"

Proceedings. Tenth International Workshop on Database and Expert Systems
Applications. DEXA, vol. 99, pp. 689-94, 1999.

[47] E. Adamides and D. Bonvin, "Failure recovery of flexible production systems

through cooperation of distributed agents," Ifip Transactions B: Computer
Applications in Technology, vol. 11, pp. 227-38, 1993.

[48] D. M. Katz, S., "Exception management on a shop floor using online simulation,"

presented at Proceedings of 1993 Winter Simulation Conference - (WSC '93), Los
Angeles, CA, USA, 1993.

89

Appendix F: Protocols for Negotiating Complex Contracts

Mark Klein
Massachusetts

Institute of
Technology

m_klein@mit.edu

Peyman Faratin
Massachusetts

Institute of
Technology

peyman@mit.edu

Hiroki Sayama
University of Electro-

Communications
sayama@hc.uec.ac.jp

Yaneer Bar-Yam
New England

Complex Systems
Institute

yaneer@necsi.org

Abstract

Work to date on negotiation protocols has focused on defining contracts consisting of one
or a few independent issues. Many real-world contracts, by contrast, are much more
complex, consisting of multiple inter-dependent issues and intractably large contract

spaces. This paper describes a simulated annealing based approach appropriate for
negotiating such complex contracts that achieves near-optimal outcomes for negotiations
with binary issue dependencies.

Keywords: non-linear mediated single text unmediated proposal exchange negotiation,
multiple interdependent issues, prisoner’s dilemma

1. Introduction
Work to date on negotiation protocols has focused on negotiating what we can call

‘simple’ contracts, i.e. contracts consisting of one or a few independent issues. These
protocols work via the iterative exchange of proposals and counter-proposals. An agent
starts with contract that is optimal for that agent and makes concessions, in each

subsequent proposal, until either an agreement is reached or the negotiation is abandoned
because the utility of the latest proposal has fallen below the agents’ reservation value
(Figure 1):

90

Reservation

Reservation

U
til

ity
 f

or
 a

ge
nt

 A
U

til
ity

 f
or

 a
ge

nt
 B

Possible contracts

Figure 1: The proposal exchange model of negotiation, applied to a simple contract. The

Y axis represents the utility of a contract to each agent. Each point on the X axis
represents a possible contract, ordered in terms of its utility to agent B. Since there is no
need to negotiate over issues that both parties agree upon, we only consider issues where

improvement for one party represents a decrement for the other. The arrows represent
how agents begin with locally optimal proposals, and concede towards each other, with
their subsequent proposals, as slowly as possible. Note that we have, for presentation

purposes, ‘flattened’ the contract space onto a single dimension, but there should actually
be one dimension for every issue in the contract.

This is a perfectly reasonable approach for simple contracts. Since issues are
independent, the utility of a contract for each agent can be calculated as the weighted sum
of the utility for each issue. The utility function for each agent is thus a simple one, with a

single optimum and a monotonic drop-off in utility as the contract diverges from that
ideal. Simple contract negotiations thus typically progress as follows:

91

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Utility for Agent 1

Pareto
Agent1
Agent2

Proposals from Agent 2

Proposals from Agent 1

Final agreement

Figure 2. The utilities for the proposals made in a typical simple contract negotiation. The
contract consisted in this case of 40 binary issues. Each agent starts with a locally optimal

proposed contract (at the extremes of the Pareto frontier) and is required to reduce the
Hamming distance (number of issues with different values) between the two agents’

proposals, until an agreement is reached. With simple contracts, this results in optimal

outcomes. The Pareto frontier, representing the set of optimal contracts, was estimated by
applying an annealing optimizer to differently weighted sums of the two agents’ utility

functions.

As we can see, the proposals from each agent start at their own ideal, and then track the
Pareto frontier until they meet in the middle with an optimal agreement. This happens

because, with linear utility functions, it is easy for an agent to identify the proposal that
represents the minimal concession: the contract that is minimally worse than the current
one is “next” to the current one in the contract space and can be found by moving in the

direction with the smallest aggregate utility slope. The simplicity of the utility functions,
moreover, makes it feasible for agents to infer enough about their opponents that they can
identify concessions that are attractive to each other, resulting in relatively quick

negotiations.

92

Real-world contracts, by contrast, are generally much more complex, consisting of a

large number of inter-dependent issues. A typical contract may have tens or even
hundreds of distinct issues. Even with only 50 issues and two alternatives per issue, we
encounter a search space of roughly 10^15 possible contracts, too large to be explored

exhaustively. The value of one issue selection to an agent, moreover, will often depend
on the selection made for another issue. The value to me of a given couch, for example,
depends on whether it is a good match with the chair I plan to purchase with it. Such

issue interdependencies lead to nonlinear utility functions with multiple local optima [1]:
U

til
ity

 f
or

 a
ge

nt
 A

U
til

ity
 f

or
 a

ge
nt

 B

Possible contracts

A

Figure 3: An example of proposal exchange applied to a complex contract. Because of
issue inter-dependencies, the utility functions have multiple optima. The arrows show
what happens when each agent begins at a local optimum and concedes towards the

other: win-win solutions (such as that represented by contract A) found elsewhere in the
contract space can be missed.

In such contexts, an agent finding its own ideal contract becomes a nonlinear
optimization problem, difficult in its own right. Simply conceding toward the other
agents’ proposals can result in the agents missing contracts that would be superior from

both their perspectives (e.g. the contract labeled “A” in figure 3 above). Standard
negotiation techniques thus typically produce the following behavior when applied to
complex contract negotiation:

93

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Utility for Agent 1

Pareto
Agent1
Agent2

Proposals from Agent 2

Proposals from Agent 1

Final agreement

Figure 4. The utilities for the proposals made in a typical complex contract negotiation.
This example differs from figure 2 only in that a nonlinear utility function was used by
each agent (details below). As we can see, the minimal concession protocol that works

optimally for simple contracts produces outcomes, for complex contracts, that are
substantially sub-optimal.

The agents start with an approximation to their ideal contract and diverge increasingly
from the Pareto frontier as they converge upon an agreement. The degree of sub-
optimality depends on the details of the utility function. In our experiments, for example,

the final contracts’ averaged 94% of optimal. This is a substantial decrement when you
consider that the utility functions we used for each agent were, individually, quite easy to
optimize: a simple steepest ascent search averaged final utility values roughly 97% of

those reached by a nonlinear optimization algorithm. It is striking that such relatively
forgiving multi-optima utility functions lead to substantially sub-optimal negotiation
outcomes.

These sub-optimal outcomes represent a fundamental weakness with current negotiation
techniques. The only way to ensure that subsequent proposals track the Pareto frontier,

and thus conclude with a Pareto optimal result, is to be able to identify the proposal that
represents the minimal concession from the current one. But in a utility function with

94

multiple optima, that proposal may be quite distant from the current one, and the only

way to find it is to exhaustively enumerate all possible contracts. This is computationally
infeasible, however, due to the sheer size of the contract space. Since the utility functions
are quite complex, it is in addition no longer practical for one agent to infer the other’s

utility function. Complex contracts therefore require different negotiation techniques
which allow agents to find ‘win-win’ contracts in intractable multi-optima search spaces
in a reasonable amount of time. In the following sections we describe a family of

negotiation protocols that make substantial progress towards achieving these goals. The
paper is structured as follows. We begin by describing how a well-known non-linear
optimization technique (simulated annealing) can be integrated with the mediated single

text negotiation protocol to produce an approach that offers near-optimal outcomes
for complex contract negotiations. We reveal the prisoner’s dilemma that results from
this approach, and propose a refined protocol, based on parity-maintaining

annealing mediator, that resolves that problem. We conclude with describing an unmediated
version of the negotiation protocol that is also effective at producing near-optimal outcomes
with complex contracts.

2. Mediated Single Text Negotiation
A standard approach for dealing with complex negotiations in human settings is the

mediated single text negotiation [2]. In this process, a mediator proposes a contract that is
then critiqued by the parties in the negotiation. A new, hopefully better proposal is then
generated by the mediator based on these responses. This process continues, generating

successively better contracts, until some agreed-upon stopping point (e.g. the reservation
utility value is met or exceeded for both parties). We can visualize this process as
follows:

95

U
til

ity
 f

or
 a

ge
nt

 A
U

til
ity

 f
or

 a
ge

nt
 B

Possible contracts

Figure 5: Single text negotiation. The vertical line represents the current proposed
contract, and subsequent proposals move that line in the contract space.

Here, the vertical line represents the contract currently proposed by the mediator. Each
new contract moves the line to a different point on the X axis. The goal is to find a

contract that is sufficiently good for both parties.

We defined a simple simulation experiment to help us explore how well this approach

actually works. In this experiment, there were two agents negotiating to find a mutually
acceptable contract consisting of a vector S of 100 boolean-valued issues, each issue
assigned the value 0 or 1, corresponding to the presence or absence of a given contract

clause. This defined a space of 2^100, or roughly 10^30, possible contracts. Each agent
had a utility function calculated using its own 100x100 influences matrix H, wherein each
cell represents the utility increment or decrement caused by the presence of a given pair

of issues, and the total utility of a contract is the sum of the cell values for every issue
pair present in the contract:

 100 100
U = ∑ ∑ Hij Sj Sj

 i=1 j=1

The influence matrix therefore captures the bilateral dependencies between issues, in
addition to the value of any individual contract clause. For our experiments, the utility

matrix was initialized to have random values between –1 and +1 in each cell. A different

96

influences matrix was used for each simulation run, in order to ensure our results were

not idiosyncratic to a particular configuration of issue inter-dependencies.

The mediator proposes a contract that is initially generated randomly. Each agent then

votes to accept or reject the contract. If both vote to accept, the mediator mutates the
contract (by randomly flipping one of the issue values) and the process is repeated. If one
or both agents vote to reject, a mutation of the most recent mutually accepted contract is

proposed instead. The process is continued for a fixed number of proposals. Note that this
approach can straightforwardly be extended to a N-party (i.e. multi-lateral) negotiation,
since we can have any number of parties voting on the contracts.

We defined two kinds of agents: ‘hill-climbers’ and ‘annealers’. The hill-climbers use a
very simple decision function: they accept a mutated contract only if its utility to them is

greater than that of the last contract both agents accepted. Annealers are more
complicated. Each annealer has a virtual ‘temperature’ T, such that it will accept
contracts worse than last accepted one with the probability:

P(accept) = min(1, e-∆U/T)

where ∆U is the utility change between the contracts. In other words, the higher the

virtual temperature, and the smaller the utility decrement, the greater the probability that
the inferior contract will be accepted. The virtual temperature of an annealer gradually
declines over time so eventually it becomes indistinguishable from a hill-climber.

Annealing has proven effective in single-agent optimization, because it can travel through
utility valleys on the way to higher optima [1]. This suggests that annealers can be more
successful than hill-climbers in finding good negotiation outcomes.

3. The Prisoner’s Dilemma
Negotiations with annealing agents did indeed result in substantially superior final

contract utilities, but as the payoff table below shows, there is a catch:

Agent 2 hill-climbs Agent 2 anneals

Agent 1 hill-climbs .86
.73/.74

.86

.99/.51

Agent1 anneals .86

.51/.99

.98

.84/.84

97

Table 1: The optimality of the negotiation outcomes for different pairings of annealing

and hill-climbing agents. The top value in each cell represents how close the social
welfare value of the final contract is to optimal. The pair of values below it represent how
close the final contract is to the optimum for the Agent 1 and Agent 2, respectively.

As expected, paired hill-climbers do relatively poorly while paired annealers do very
well. If both agents are hill-climbers they both get a poor payoff, since it is difficult to

find many contracts that represent an improvement for both parties. A typical negotiation
with two hill-climbers looks like the following:

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Utility for Agent 1

Pareto
Accepted

Accepted Proposals

Figure 6: The utilities for the accepted proposals in a typical single text complex contract
negotiation with two hill-climbers. The mediator’s initial proposal is at the lower left, and

the subsequent accepted proposals move towards higher utilities for both agents.

As we can see, in this case the mediator was able to find only a handful of contracts that

increased the utility for both hill-climbers, and ended up with a poor final social welfare.

98

Near-optimal social welfare can be achieved, by contrast, when both agents are annealers,

willing to initially accept individually worse contracts so they can find win-win contracts
later on:

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Utility for Agent 1

Pareto

Accepted

Accepted Proposals

Figure 7: The utilities for the accepted proposals for a typical single text complex

contract negotiation with two annealers. Some of the accepted proposals actually cause
utility decrements for one or both agents, but the final result is a near-optimal contract.

The agents entertain a much wider range of contracts, eventually ending very near the
Pareto frontier.

If one agent is a hill-climber and the other is an annealer, however, the hill-climber does
extremely well but the annealer fares correspondingly poorly (Figure 8). This pattern can

99

be understood as follows. When an annealer is at a high virtual temperature, it becomes a

chronic conceder, accepting almost anything beneficial or not, and thereby pays a
“conceder’s penalty”. The hill-climber ‘drags’ the annealer towards its own local
optimum, which is not very likely to also be optimal for the annealer:

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Utility for Hillclimber

Pareto
Accepted

Accepted Proposals

Figure 8: The utilities for the accepted proposals for a typical single text complex

contract negotiation with an annealer and a hill climber. Note that the hill climber
achieves a near-optimal contract at the expense of the annealer.

This reveals a dilemma. In negotiation contexts we typically can not assume that agents
will be altruistic, and we must as a result design protocols such that the individually most
beneficial negotiation strategies also produce the greatest social welfare [3]. In our case,

however, even though annealing is a socially dominant strategy (i.e. annealing increases
social welfare), annealing is not an individually dominant strategy. Hill-climbing is
dominant, because no matter what strategy the other agent uses, it is better to be a hill-

climber (Table I). If all agents do this, however, then they forego the higher individual
utilities they would get if they both annealed. Individual rationality thus drive the agents
towards the strategy pairing with the lowest individual and social welfare. This is thus an

instance of the prisoner’s dilemma. It has been shown that this dilemma can be avoided if

100

we assume repeated interactions between agents [4], but we would prefer to have a

negotiation protocol that entices socially beneficial behavior without that difficult-to-
enforce constraint. Several straightforward approaches to this problem, however, prove
unsuccessful. One possibility is to simply reduce the annealer’s willingness to make

concessions. This can indeed eliminate the conceder’s penalty, but at the cost of
achieving social welfare values only slightly better than that achieved by two hill
climbers. Another option is to have agents switch from being an annealer to a hill-climber

if they determine, by observing the proposal acceptance rates of their opponents, that the
other agent is being a hill-climber. We found, however, that it takes too long to determine
the type of the other agent: by the time it has become clear, much of the contract utility

has been committed, and it is too late to recover from the consequences of having started
out as an annealer. See [5] for details.

4. The Annealing Mediator
We were able to define a negotiation protocol that avoids the prisoner’s dilemma entirely
in mediated single-text negotiation of complex contracts. The trick is simple: rather than

requiring that the negotiating agents anneal, and thereby expose themselves to the risk of
being dragged into bad contracts, we moved the annealing into the mediator itself. In our
original protocol, the mediator would simply propose modifications of the last contract

both negotiating agents accepted. In our refined protocol, the mediator is endowed with a
time-decreasing willingness to follow up on contracts that one or both agents rejected
(following the same inverse exponential regime as the annealing agents). Agents are free

to remain hill-climbers and thus avoid the potential of making harmful concessions. The
mediator, by virtue of being willing to provisionally pursue utility-decreasing contracts,
can traverse valleys in the agents’ utility functions and thereby lead the agents to win-win

solutions. We describe the details of our protocol, and our evaluations thereof, below.

In our initial implementations each agent gave a simple accept/reject vote for each

proposal from the mediator, but we found that this resulted in final social welfare values
significantly lower than what we earlier achieved using annealing agents. In our next
round of experiments we accordingly modified the agents so that they provide additional

information to the mediator in the form of vote strengths: each agent annotates an accept
or reject vote as being strong or weak. The agents were designed so that there are roughly
an equal number of weak and strong votes of each type. This maximizes the
informational content of the vote strength annotations. When the mediator receives these

votes, it maps them into numeric values (strong accept = 1, weak accept = 0, weak reject
= -1, strong reject = -2) and adds them together to produce an aggregate score. A
proposal is accepted by the mediator if the score is non-negative, i.e. if both agents voted

to accept it, or if a weak reject by one agent is overridden by a strong accept from the

101

other. The mediator can also accept rejected contracts (i.e. those with a negative aggregate

score) using the annealing scheme described above. This approach works surprisingly
well, achieving final social welfare values that average roughly 99% of optimal despite
the fact that the agents each supply the mediator with only two bits of information. We

found, in fact, that increasing the number of possible vote weights did not increase final
social welfare. This is because the strong/weak vote annotations are sufficient to allow
the system to pursue social welfare-increasing contracts that cause a utility decrement for

one agent.
5. Incentives for Truthful Voting

Any voting scheme introduces the potential for strategic non-truthful voting by the

agents, and our scheme is no exception. Imagine that one of the agents always votes
truthfully, while the other exaggerates so that its votes are always ‘strong’. One might
expect that this would bias negotiation outcomes to favor the exaggerator and this is in

fact the case:

Agent 2 exaggerates Agent 2 tells truth

Agent 1 exaggerates .92
.81/.81

.93

.93/.66

Agent 1 tells truth .93

.66/.93

.99

.84/.84

Table 2: The optimality of the negotiation outcomes for truth-telling vs exaggerating

agents with a simple annealing mediator. An exaggeration strategy is individually

enticed, even though it results in outcomes with lower social welfare.

As we can see, even though exaggerating has substantial negative impact on social
welfare, agents are individually enticed to exaggerate, thus re-creating the prisoner’s
dilemma we encountered earlier. The underlying problem is simple: exaggerating agents

are able to induce the mediator to accept all the proposals that are advantageous to them
(if they are weakly rejected by the other agent), while preventing the other agent from
doing the same. What we need, therefore, is an enhancement to the negotiation protocol

that entices truthful voting, preserving equity and maximizing social welfare.

How can this be done? We found that simply placing a limit on the number of strong
votes each agent can use does not work. If the limit is too low, we effectively lose the

benefit of vote weight information and get the lower social welfare values that result. If
the strong vote limit is high enough to avoid this, then all an exaggerator has to do is save

102

all of it’s strong votes till the end of the negotiation, at which point it can drag the

mediator towards making a series of proposals that are inequitably favorable to it.

Another possibility is to enforce overall parity in the number of “overrides” each agent

gets. A override occurs when a contract supported by one agent (the “winner”) is
accepted by the mediator over the objections of the other agent. Overrides are what drags
a negotiation towards contracts favorable to the winner, so it makes sense to make the

total number of overrides equal for each agent. But this is not enough, because
exaggerators always win disproportionately more than the truth-teller.

The solution, we found, came from enforcing parity between the number of overrides
given to each agent throughout the negotiation, so neither agent can get more than a
given advantage. This way at least rough equity is maintained no matter when (or

whether) either agent chooses to exaggerate. The results of this approach were as follows
when the override disparity was limited to 3:

Agent 2 exaggerates Agent 2 tells truth

Agent 1 exaggerates .91
.79/.79

.92

.78/.81

Agent 1 tells truth .92
.81/.78

.98

.84/.84

Table 3: The optimality of the negotiation outcomes for truth-telling vs exaggerating
agents with parity-enforcing mediator. The parity-enforcing mediator makes truth-telling
the rational strategy.

When we have truthful agents, we find that this approach achieves social welfare just
slightly below that achieved by a simple annealing mediator, while offering a

significantly (p < 0.01) higher payoff for truth-tellers than exaggerators. We found,
moreover, that the same pattern of results holds for a range of exaggeration strategies,
including exaggerating all the time, exaggerating at random, or exaggerating just near the

end of the negotiation. Truth-telling is thus both the individually dominant and socially
most beneficial strategy.

Why does this work? Why, in particular, does a truth-teller fare better than an

exaggerator with this kind of mediator? One can think of this procedure as giving agents
‘tokens’ that they can use to ‘purchase’ advantageous overrides, with the constraint that
both agents spend tokens at a roughly equal rate. Recall that in this case a truthful agent,

103

offering a mix of strong and weak votes, is paired with an exaggerator for whom at least

some weak accepts and rejects are presented as strong ones. The truthful agent can
therefore only get an override via annealing (see Table 3), and this is much more likely
when its vote was a strong accept rather than a weak one. In other words, the truthful

agent spends its tokens almost exclusively on contracts that truly offer it a strong utility
increase. The exaggerator, on the other hand, will spend tokens to elicit a override even
when the utility increment it derives is relatively small. At the end of the day, the truthful

agent has spent its tokens more wisely and to better effect.

6. The Unmediated Single Text Protocol
The protocol we have just considered worked well in the contexts studied but suffers
from the disadvantage of requiring a mediator. One issue concerns trust. Since the
annealing mediator is empowered to selectively ignore agent votes, there is the risk that it

may do so in a way that favors one agent over another (though the use of the parity-
enforcing token mechanism does somewhat reduce the potential impact of this problem).
Another issue concerns how quickly negotiations converge on a result. The annealing

mediator generates new proposals by making random mutations to the last provisionally
accepted contract, without taking into account any information about what contracts are
preferable or even sensible. As a result, the mediator generates a very high proportion of

rejected contracts, which is part of the reason why our experimental runs each involved
so many (2500) proposals. The negotiating agents could imaginably provide the
mediator with information about their utility functions so that the mediator is able to

propose contracts more ‘intelligently’, but this is problematic for a number of reasons
including the typical reluctance of self-interested agents to reveal their utility functions to
a party that may or may not be worthy of their trust.

An effective unmediated version of the annealing protocol can, fortunately, be defined. It
works as follows. Agents each start with a given number of tokens (2 each, in our

experiments) and a mutually agreed-upon starting temperature T. A random contract is
generated, and one of the negotiating agents is selected at random to propose a small (e.g.
single-issue) variant thereof, presumably the variant that most increases the utility of the

contract for that agent. The other agent then votes on the proposed variant. The proposing
and voting both indicate the strength of their preference for the proposed contract using
the scheme described above (i.e. strong reject, weak reject, weak accept, strong accept).
The contract is provisionally accepted with probability

P(accept) = min(1, e-∆U/T)

104

where the aggregate score (∆U) is calculated as for the annealing mediator, and the

outcome is determined using the roll of a fair, mutually observable dice. If the decision to
accept a proposal represents the over-ride of one agents’ reject vote, the winning agent

needs to give one of its’ tokens to the over-ridden agent. An over-ride is not permitted if
the agent has run out of tokens. The proposer and voter alternate roles thereafter until
neither agent can identify any improvements to make to the last accepted contract. Agents

in the proposer role may pass but may not repeat proposals. The temperature T declines at
a mutually agreed-upon rate during this process. This protocol thus reproduces the key
elements of the annealing mediator protocol – a time-dependent annealing regime plus

tokens - without the need for a mediator. Our experiments show that this protocol
produces results just as good as the annealing mediator, averaging 99% of optimal, while
requiring fewer proposal exchanges (averaging about 200 exchanges per negotiation).

7. Contributions
We have shown that negotiation involving complex contracts (i.e. those with many

multiple inter-dependent issues) has properties that are substantially different from the
simple (independent issue) case that has been studied to date in the negotiation literature,
and requires as a result different protocols in order to achieve near-optimal outcomes.

This paper presents, as far as we are aware, the first negotiation protocol designed
specifically for complex contracts. While some previous work has studied multi-issue
negotiation (e.g. [6] [7] [8]) the issue utilities in these efforts are treated as independent,

so the utility functions for each agent are linear, with single optima. As we have seen,
however, the introduction of multiple optima changes the game drastically. Multi-
attribute auctions [9] represent another scheme for dealing with multiple issues, wherein

one party (the buyer) publishes its utility function, and the other parties (the sellers)
make bids that attempt to maximize the utility received by the buyer. If none of the bids
are satisfactory, the buyer modifies its published utility function and tries again. This

introduces a search process, and the problem with this approach is that it does not provide
any guidance for how the parties involved should control their search through the vast
space of possibilities. The essence of our own approach can be summarized simply:

conceding early and often (as opposed to little and late, as is typical for independent issue
negotiations) is a key to negotiating good complex contracts. Conceding is not
individually rational in the face of agents that may choose not to concede, but this

problem can be resolved either by introducing a mediator that stochastically ignores agent
preferences, or by introducing dice into the negotiation protocol. In both cases, the
exchange of tokens when one agent overrides another can be used to entice the truthful
voting that enables win-win outcomes.

105

8. Next Steps
There are many other promising avenues for future work in this area. The high social
welfare achieved by our approach partially reflect the fact that the utility functions for
each agent, based as they are solely on binary dependencies, are relatively easy to

optimize. Higher-order dependencies, common in many real-world contexts, are known
to generate more challenging utility landscapes [10]. We hypothesize that it may be
necessary to adapt non-linear optimization techniques such as genetic algorithms into the

negotiation context in order to address this challenge. Another possibility involves agents
providing limited information about their utility functions to the mediator or to each other
in order to facilitate more intelligent search through very large contract spaces. Agents

can, for example, tell the mediator which issues are heavily dependent upon each other,
allowing the mediator to focus its attention within tightly-coupled issue ‘clumps’, leaving
other less influential issues till later. We hypothesize that agents may be enticed to tell

the truth in order to ensure that negotiations can complete in an acceptable amount of
time. Finally, we would like to derive formal incentive compatibility proofs (i.e.
concerning when agents are enticed to vote truthfully) for our protocols. New proof

techniques will probably be necessary because previous results in this area have made
strong assumptions concerning the shape of the agent utility functions that do not hold
with complex contracts.

9. Acknowledgements
This work was supported by funding from the DARPA Control of Agent-Based Systems

(CoABS) program, and the NSF Computation and Social Systems program.

10. References
1.Bar-Yam, Y., Dynamics of complex systems. 1997, Reading, Mass.: Addison-Wesley.

xvi, 848.
2.Raiffa, H., The art and science of negotiation. 1982, Cambridge, Mass.: Belknap Press

of Harvard University Press. x, 373.
3.Rosenschein, J.S. and G. Zlotkin, Rules of encounter : designing conventions for

automated negotiation among computers. Artificial intelligence. 1994, Cambridge,

Mass.: MIT Press. xxi, 229.
4.Axelrod, R., The Evolution Of Cooperation. 1984: Basic Books.
5.Klein, M., P. Faratin, and Y. Bar-Yam, Using an Annealing Mediator to Solve the

Prisoners’ Dilemma in the Negotiation of Complex Contracts, in Proeedings of the

Agent-Mediated Electronic Commerce (AMEC-IV) Workshop. 2002, Springer-Verlag.
6.Faratin, P., C. Sierra, and N.R. Jennings, Using similarity criteria to make negotiation

trade-offs. Proceedings Fourth International Conference on MultiAgent Systems. IEEE

Comput. Soc., 2000.

106

7.Jonker, C.M. and J. Treur. An Agent Architecture for Multi-Attribute Negotiation. In

the proceedings of Proceedings of IJCAI-01. 2001.
8.Fatima, S.S., M. Wooldridge, and N. R.Jennings. MultiIssue Negotiation Under Time

Constraints. In the proceedings of Proceedings of the 2002 International Conference

on Autonomous Agents and Multi-Agent Systems (AAMAS-02). 2002. Bologna, Italy:
ACM.

9.Bichler, M. and J. Kalagnanam, Bidding Languages and Winner Determination in

Multi-Attribute Auctions. European Journal of Operational Research, In Press.
10. Kauffman, S.A., The origins of order: self-organization and selection in

evolution. 1993: Oxford University Press.

107

Appendix G: Exception Handling in Agent Systems

Mark Klein
Center for Coordination Science

MIT E40-169
Cambridge MA 02139

1 (617) 253-6796

m_klein@mit.edu

Chrysanthos Dellarocas
Sloan School of Management

MIT E53-315
Cambridge MA 02139

1 (617) 258-8115

dell@mit.edu

ABSTRACT
A critical challenge to creating effective agent-based systems is allowing them to operate
effectively when the operating environment is complex, dynamic, and error-prone. In this
paper we will review the limitations of current “agent-local” approaches to exception

handling in agent systems, and propose an alternative approach based on a shared
exception handling service that is “plugged”, with little or no customization, into existing
agent systems. This service can be viewed as a kind of “coordination doctor”; it knows

about the different ways multi-agent systems can get “sick”, actively looks system-wide
for symptoms of such “illnesses”, and prescribes specific interventions instantiated for
this particular context from a body of general treatment procedures. Agents need only

implement their normative behavior plus a minimal set of interfaces. We claim that this
approach offers simplified agent development as well as more effective and easier to
modify exception handling behavior.

Keywords
Exception failure handling detection and resolution

1. The Challenge: Exception-Capable Agent Systems

A critical challenge to creating effective agent-based systems is allowing them to operate
effectively when, as is typical for many domains ranging from manufacturing to office

work to military information gathering, the operating environment is complex, dynamic,
and error-prone [1-5]. In such domains, we can expect to utilize a highly diverse set of
agents; some have fairly sophisticated coordination capabilities, but many will be simple

encapsulations of legacy applications. New tasks, agents and other resources can be
expected to appear and disappear in unpredictable ways. Communication channels can
fail or be compromised, agents can “die” (break down) or make mistakes, inadequate

responses to the appearance of new tasks or resources can lead to missed opportunities or
inappropriate resource allocations, unanticipated agent inter-dependencies can lead to

108

systemic problems like multi-agent conflicts, “circular wait” deadlocks, and so on. All of

these departures from “ideal” collaborative behavior can be called exceptions. The result
of inadequate exception handling is the potential for systemic problems such as clogged
networks, wasted resources, poor performance, system shutdowns, and security

vulnerabilities.
In this paper we will review the limitations of current “agent-local” approaches to
exception handling in agent systems, and propose an alternative “shared service”

approach that offers simplified agent development as well as more effective and easier to
modify exception handling behavior. Initial versions of this service have been developed
and tested in the multi-agent collaborative design conflict management domain; we will

describe our preliminary results as well as our future plans.

2. Contributions and Limitations of Current Work

Current approaches to agent exception handling have serious limitations in terms of agent

development cost and the effectiveness of system-wide exception handling behavior. The
standard approach has been to “compile in” complicated and carefully coordinated
exception handling behaviors into all problem-solving agents. This is, however,

fundamentally problematic, since the causes, manifestations and resolutions for agent
system exceptions are inherently systemic and context-sensitive rather than localizable to
any particular agent. A circular wait deadlock, for example (where several agents are all

stalled waiting for inputs from each other) can only be detected as a pattern of agent
interactions, and can only be resolved by changing that pattern (e.g. by replacing one
agent with another that has different input requirements). Agent developers must thus

anticipate all the contexts in which the agent may be used, but this is extremely difficult.
No systematic methodology is available, however, to help developers identify all relevant
exception types and resolution strategies. Making changes in exception handling behavior

is difficult because it potentially requires coordinated changes in multiple agents. Agents
become much harder to maintain, understand and reuse because the relatively simple
normative behavior of an agent becomes obscured by a potentially large body of code

devoted to handling exceptional conditions. Finally, it is unrealistic to expect that all
agents will have sophisticated exception handling capabilities built in. In many cases we
will have to be able to operate with agents whose design incorporates only the most basic

capabilities.
A few efforts have done some preliminary exploration of the use of distinct exception
handling services. This work has occurred predominantly in the context of business
process enactment [1-3, 5, 6], manufacturing control [7-9] and planning [10, 11]. The

process enactment and manufacturing work, in general, has either not evolved to the
point of constituting a computational model, or has been applied to a very limited range
of domains (e.g. just software engineering or flexible manufacturing cell control) and

109

exception types (e.g. just inappropriate task assignments). The planning work, by

contrast, has developed a range of computational models but their ability to redesign a
multi-agent work process in response to an exception is contingent upon the planning
approach having been used to develop the original work process. This requirement is

difficult or impossible to satisfy in an environment where the work process emerges
dynamically via the interaction of multiple heterogeneous agents.

3. Our Approach: A Shared Exception Handling Service

Our approach transcends the limitations of current approaches by creating a shared
exception handling service that can be “plugged”, with little or no customization, into
existing agent systems to add the ability to function in exception-prone environments.

This service can be viewed as a kind of “coordination doctor”; it knows about the
different ways multi-agent systems can get “sick”, actively looks system-wide for
symptoms of such “illnesses”, and prescribes specific interventions instantiated for this

particular instance from a body of general treatment procedures. Agents need only
implement their normative behavior plus a minimal set of interfaces that assume only that
each agent can report on its own behavior and modify its own actions to at least some

extent. This vision is realized by building on four key innovations:
• We define a clear division of labor. Problem solving agents focus on executing their

own “normal” problem solving behavior, while the exception handling agents focus

on detecting and resolving exceptions in the agent ensemble as a whole.
• The exception handling service applies a knowledge base of generic exception

handling detection, diagnosis and resolution expertise which can be applied to a wide

range of domains.
• The “cost of admission” is only that agents understand a standard language providing

at least a basic level of self-awareness and self-modifiability, comparable to what is

required of agents capable of reasonably sophisticated coordination in exception-free
contexts.

• This service can be implemented as a set of standard agents that can be “plugged” in

to any agent system whose agents support the language interfaces described above.
We describe our approach in more details in the paragraphs below.
Generic Exception Handling Expertise: The key element underlying our approach is the

simple but powerful notion that generic and reusable exception handling expertise can be
usefully separated from the knowledge used by agents to do their “normal” work. There
is substantial evidence for the validity of this claim. Early work on expert systems
development revealed that it is useful to separate domain-specific problem solving and

generic control knowledge [12, 13]. Analogous insights were also confirmed in the
domains of collaborative design conflict management [14] and in preliminary work on

110

process exception management [15]. Generic exception management strategies are easy

to find [16]. Some examples include:

• if an agent plan has failed, backtrack to a different plan for achieving the same goal

• if a highly serial process is operating too slowly to meet an impending deadline, and

the subtasks have only serial dependencies, use pipelining (i.e. releasing results for
earlier subtasks before later subtasks are completed) to increase concurrency

• if an agent receives garbled data, trace the problem back to the original source of the

faulty data, eliminate all decisions that were corrupted by this error, and start again

• if an agent may be late in producing a time-critical output, see whether the consumer
agent will accept a less accurate output in exchange for a quicker response

• if multiple agents are causing wasteful overhead by frequently trading the use of a
scarce shared resource, change the resource sharing policy such that each agent gets
to use the resource for a longer time

• if a new high-performance resource applicable to a time-critical task becomes
available, consider reallocating the task from its current agent to the new agent

• if an agent in a serial production line fails to perform a task, try to re-allocate the task

to an appropriately skilled agent further down the line

It is our experience that such strategies are easy to acquire from a wide range of research
literature sources, as well as by generalizing from the vast range of exception handling

cases we all encounter. We have identified about 300 strategies to date; more details will
be given below.
 Heuristic Classification: A useful metaphor for organizing such expertise, we have found,

is to treat exception handling (EH) as a heuristic classification process [17] analogous to
that used in medical diagnosis. In this approach, an exception manifestation (i.e.
symptom), once detected, is mapped to candidate diagnoses in a pre-defined taxonomy of

generic underlying causes; generic strategies associated with these diagnoses are then
instantiated into candidate exception resolution plans, one of which is then selected and
executed:

111

 Specific
EH Plans

Actions
Using Action

Language

Exception
Manifestations

Exception
Detection

Exception
Classes

Instantiate
Advice

Collect Advice
General Advice

Execute
EH PLan

Map To
Exception
Classes

Pick EH Plan

Selected EH Plan

Queries
Using Query

Language

Process
Status

The approach thus instantiates generic exception handling expertise into specific

situations. The EH service communicates with agents using pre-defined languages for
learning about the exception(s) (the query language) and for describing exception
resolution actions (the action language). Agents can take any form as long as they are

capable of responding appropriately to at least a minimum subset of these query and
action languages.

Exception Detection: The first step in detecting exceptions is, of course, having a model
of what the “correct” behavior for the multi-agent system is. When an agent is introduced
into a multi-agent system, therefore, it must register at least a rudimentary model of its

normative behavior with the exception handling service. This model is mapped to a list of
the failure modes that are known to occur for that kind of normative behavior, and
sentinels are generated to detect those modes.

Failure mode identification is done making use of a taxonomy of generic problem solving
processes wherein each process is annotated with the different ways it can fail. When a
new agent is registered, we merely identify the generic processes corresponding to that

agent’s behavior, and derive the applicable failure modes from that. For example, it is
typical for agents to require the output of another agent. The processes for managing such
“flow” dependencies need to make sure that the right thing gets to the right place at the

right time [18]. This immediately implies a set of possible failure modes including an
input being late (“wrong time”), of the wrong type (“wrong thing”) and so on. Similar
analyses can be done for other generic processes, e.g. resource sharing, diagnosis,

synthesis, market-based coordination and so on. We are building for this purpose upon

112

the process taxonomy being developed in the context of the MIT Process Handbook. The

Handbook is a substantive (3700+ entity) and growing repository of coordination
mechanisms and other problem solving processes [18-20] which has been under
development for roughly the past five years in the MIT Center for Coordination Science.

Our work to date in performing failure mode analysis has revealed a wide range of
exception types [15]. Exceptions in general involve violations of some either implicit or
explicit assumption underlying a collaborative work process (e.g. stability of resources,

correctness of output etc.) and can include change in resources, organizational structure,
agent system policies, task requirements or task priority. They can also include
incorrectly performed tasks, missed due dates, resource contentions between two or more

distinct processes, unexpected opportunities to merge or eliminate tasks, conflicts
between actions taken in different process steps and so on.
Every failure mode can have associated with it a script that searches for the pattern of

agent behavior corresponding to that failure. These scripts, once instantiated, play the
role of “sentinels” that alert the exception handling service when the condition they were
created to detect has occurred. A typical sentinel, for example, may check for a task

becoming late, violation of resource limits, circular wait patterns, and so on. To define
these scripts, we build upon pattern matching tools developed in previous work [21].
Exception Diagnosis: The diagnosis mechanisms works by traversing a taxonomy of

possible exception diagnoses based on the presenting symptoms as well as information
about the process model being enacted. This is a "shallow model" approach [22] because
it is based on compiled empirical and heuristic expertise rather than first principles. This

approach is appropriate for domains, such as medical diagnosis, where complete and
consistent first-principle-based behavioral models do not exist. An important
characteristic of heuristic classification is that the diagnoses represent hypotheses rather

than guaranteed deductions: multiple diagnoses may be suggested by the same
symptoms, and often the only way to verify a diagnosis is to see if the associated
prescriptions are effective.

The diagnosis hierarchy, in our current model, is structured as a decision tree wherein the
system starts at the top most abstract diagnosis and attempts to refine it to more specific
diagnoses by traversing down the tree and selecting the appropriate decision branches by

asking questions, expressed as query language statements, of the relevant problem
solving agents. For example, if the system is assessing whether the diagnosis of “circular
wait deadlock” applies, it may ask agents for which other agents they are waiting for
inputs from. This traversal can result in more than one candidate diagnosis, since multiple

causes may be suggested by the same symptoms.
Exception Resolution: Once one or more candidate diagnoses for an exception have been
identified, the next step is to generate, using a knowledge base of generic exception

resolution strategies, specific plans for resolving the problem. A diagnosis class will

113

often have several potential resolution strategies. Since they may not all be applicable for

a particular exception, a decision tree procedure identical to that used to select diagnoses
is used to find the generic strategies for a given diagnosis. Strategies are represented as
executable script templates whose actions are described using the action language. Every

template has "slots” which are filled with context-specific values, found using query
language queries, to produce specific exception resolution plans. The resolution strategy
“backtrack to untried plan for goal”, for example, would include slots for the goal and

plan that are filled in by asking the affected agent what goal was trying to achieve, and
what other plans are available for achieving that same goal. Typically, many possible
candidate plans can be generated for a given exception. We can backtrack, for example,

in as many ways as there are alternative plans. In our previous work we have found that a
relatively small collection of domain-independent heuristics (e.g. “pick the plan that
makes the smallest change”) has been effective in producing a useful ranking of

candidate exception resolution plans.
The Query and Action Languages: As we have seen, the query and action languages
represent the medium by which the exception handling service interacts with the problem

solving agents to detect, diagnose and resolve exceptions. The query language is used to
get agent state information, and the action language is used to modify it.
The query language we use builds upon that developed in earlier systems [16, 23]

extending it to include queries concerning normative agent behavior models. The query
language is relatively large, and we will make the effort to consolidate it into a smaller
set of critical query types. The action language, in contrast, consists of a relatively
small set of operators [16]. These include changing the process model (reordering,
deleting or adding new tasks; changing the resources allocated to a task;
canceling tasks) and changing the work package contents.

Our experience to date has shown that agents do not have to understand all of the query
or action language primitives in order to benefit from the exception handling service, but
the more primitives they can understand, the more effective the exception handling

service is likely to be. This is because the more generic exception diagnoses and
resolution strategies tend to require only the simplest and easiest to implement queries
and actions, but the more sophisticated (and presumably more effective) diagnoses and

resolutions use the more “advanced” primitives.
The query and action languages can be viewed as representing a “price of admission” to
our approach. These languages only require, however, that the individual problem solving
agents be able to describe their own behavior as well as a modify their own actions; the

exception handling service is responsible for understanding how local knowledge and
actions can be coordinated to produce a globally effective exception response. Previous
DAI research suggests, moreover, that for many cases we want our agents to have

114

roughly that level of self-awareness and self-modifiability in order to support effective

coordination even in the absence of exceptions [24].
System Architecture: The capabilities described above can be implemented
straightforwardly as agents that can simply be plugged-in to an existing agent system

with suitable interfaces:

infrastructure

query
interface

action
interface

problem solving
agent

query
interface

action
interface

new agent
registration

exception
detection agent
(sentinel)

exception
resolution
agent

find
diagnoses

create/select
resolution

Core
EH
Agents

EH
Agents
Created
As
Needed

normative
behavior
specification

symptoms to
look for

detected
symptoms

diagnostic
queries

selected
resolution
plan

ranked
diagnoses

This architecture consists of exception handling agents, problem solving agents as well as
the agent systems infrastructure, all of which must support at least the base level query
and action languages. When a new agent is created, the “new agent registration” agent

takes a description of its normative behavior and creates sentinels (exception detection
agents) as necessary to look for evidence of dysfunctional behavior. Should a sentinel
detect such symptoms, this information is sent to a “diagnosis” agent which produces a

ranked set of candidate diagnoses. These in turn are sent to the resolution agent which
defines a resolution plan instantiated in the form of a “resolution” (exception resolution)
agent. We can have redundant copies of these agents, thereby increasing performance

and addressing potential failures in the exception handling agents themselves.
Human in the Loop: While the architecture above has been presented as a fully automated
one, in at least some cases it will make sense to include a human “executive manager” in

115

the loop. Our previous work in this area, for example, used human input to modify the

ranking of diagnoses and resolution plans proposed by the exception handling service,
and thereby direct the system in the direction the human users considered more
appropriate [25]. We have found that the exception handling service can help human

users better understand and more creatively resolve exceptions, even if they did not use
the particular resolutions proposed by the system.

4. Evaluation: Contribution to Improving Agent-Based Systems

The ideas described in this paper have already been substantially validated through nearly
a decade of development and evaluation of successful systems for resolving multi-agent
exceptions in the collaborative design [14, 16, 26] and collaborative requirements capture

[21] domains. This led to the development of the basic heuristic classification approach,
software tools for exception diagnosis and resolution, a substantive standardized
language for communication between agents and the exception handling service, a highly

expressive rationale capture language [23], as well as a substantive and growing
knowledge base of exception resolution heuristics. More recent work has begun applying
these ideas to a broader range of exception types [15, 27, 28]. The current contents of the

exception handling knowledge base can be characterized as follows:

Aspect Number Examples

conflict detection strategies ~10 • check for violated resource budget
• check for inconsistent parameter constraints

query operators in
standardized agent
communication language

~100 • what is the rationale for the decision?
• is the parameter constraint relaxable?

action operators in
standardized agent
communication language

~10 • relax constraint
• try different plan for goal

exception diagnoses ~100 • agent constraints too ambitious
• excessive serialization in work process

exception resolution

strategies

~300 • relax constraints, maximizing summed utilities

• pipeline tasks with serial dependencies

exception plan selection
heuristics

~10 • pick most specific resolution plan
• abandon low level goals before high level goals

116

Our results to date suggest that the exception handling service approach enables two

classes of important benefits:
• easier agent development: This approach makes it much easier to develop,

understand, maintain and reuse problem solving agents, since developers can focus on

their normative behavior without having to build in responses to all possible
exceptions. This greatly reduces the cost of achieving the transparent agent
interoperability that underlies the appeal of agent systems. Another advantage is that

this approach does not rely on the existence of powerful exception-handling support
facilities in every agent’s implementation language.

• easier to specify effective exception handling behavior: We are less likely to miss

important failure modes, and will probably use better exception resolution practices,
by taking advantage of a systematically accumulated knowledge base of exception
handling “best practices”. It will also be much easier, we believe, to specify and

modify systemic exception-handling expertise if it is treated as a functional unit rather
than captured as a series of carefully designed interlocking behaviors spread over
myriads of diverse agents.

These benefits translate into more reliable, predictable and efficient agent-based system
operation.

5. Future Work

We plan to follow two inter-related tracks in our future work: (1) further development of
the exception handling knowledge base and underlying diagnostic technology, and (2)
further evaluation of this technology in both simulated and “real-world” testbed contexts.

Technical issues we currently consider important include extending the diagnostic
approach to be able to handle multiple simultaneous exceptions in a coordinated way
[29], as well as reducing as much as possible the size of the query/action languages that

agents need to understand in order to interact effectively with the exception handling
service. We also plan to explore “model-based” diagnostic approaches [30, 31] which
have been applied with good results to explaining faults in that subclass of systems where

complete behavioral models exist
Our evaluation plan consists of a graded series of experiments, occurring first in a
simulated agents testbed (where we have the maximum flexibility in designing the test

scenarios), and then transitioning to an externally developed testbed (to assess and
demonstrate the ability to extend a pre-extending agent system with our exception
handling technology). The simulated testbed will evaluate agent system behavior using
such heuristics as problem solving time, effectiveness of resource utilization, the

understandability of the agent ensemble behavior to human observers, ability of problem
solving agents to work in multiple ensemble contexts w/o modification, and the ability to
control the tradeoff between exception handling and problem solving effort. We currently

117

plan to do our first tests in the manufacturing logistics domain. The second testbed will

enable a “technology integration experiment” wherein we explore integration of our
exception handling technology into a agent system not originally designed for that
purpose. This will allow us to assess and demonstrate the ability of our technology to be

“plugged in” to other testbeds, help us identify the knowledge base and query/action
language enhancements needed, if any, and provide insights into how integration can best
be done. We can therefore view this as a “final rehearsal” for adoption of our technology

by agent system developers outside of our project team. We are currently considering, for
this purpose, the MIT AI Lab’s “Intelligent Room”, a large real-time agent-based
information gathering/presentation system [32-34].

6. Acknowledgements

The authors gratefully acknowledge the support of the DARPA CoABS Program
(contract F30602-98-2-0099) while preparing this paper.

7. References

[1] Auramaki, E. and M. Leppanen. Exceptions and office information systems. in
Proceedings of the IFIP WG 8.4 Working Conference on Office Information Systems:

The Design Process. 1989. Linz, Austria.

[2] Karbe, B.H. and N.G. Ramsberger, Influence of Exception Handling on the Support
of Cooperative Office Work, in Multi-User Interfaces and Applications, S. Gibbs and

A.A. Verrijin-Stuart, Editors. 1990, Elsevier Science Publishers. p. 355-370.

[3] Strong, D.M., Decision support for exception handling and quality control in office
operations. Decision Support Systems, 1992. 8(3).

[4] Suchman, L.A., Office Procedures as Practical Action: Models of Work and System
Design. ACM Transactions on Office Information Systems, 1983. 1(4): p. 320-328.

[5] Mi, P. and W. Scacchi. Articulation: An Integrated Approach to the Diagnosis,

Replanning and Rescheduling of Software Process Failures. in Proceedings of 8th
Knowledge-Based Software Engineering Conference. 1993. Chicago, IL, USA: IEEE
Comput. Soc. Press; Los Alamitos, CA, USA.

[6] Kreifelts, T. and G. Woetzel. Distribution and Error Handling in an Office Procedure
System. in IFIP WF 8.4 Working Conference on Methods and Tools for Office
Systems. 1987. Pisa Italy.

[7] Visser, A., An exception-handling framework. International Journal of Computer
Integrated Manufacturing, 1995. 8(3): p. 197-203.

[8] Parthasarathy, S. Generalised process exceptions-a knowledge representation
paradigm for expert control. in Proceedings of the Fourth International Conference on

118

the Applications of Artificial Intelligence in Engineering. 1989. Cambridge, UK:

Comput. Mech. Publications; Southampton, UK.

[9] Katz, D.M., S. Exception management on a shop floor using online simulation. in
Proceedings of 1993 Winter Simulation Conference - (WSC '93). 1993. Los Angeles,

CA, USA: IEEE; New York, NY, USA.

[10] Birnbaum, L., et al. Model-Based Diagnosis of Planning Failures. in AAAI-90.
1990.

[11] Broverman, C.A. and W.B. Croft. Reasoning About Exceptions During Plan
Execution Monitoring. in AAAI-87. 1987.

[12] Gruber, T.R., A Method For Acquiring Strategic Knowledge. Knowledge

Acquisition, 1989. 1(3): p. 255-277.

[13] Barnett, J.A., How Much Is Control Knowledge Worth? A Primitive Example.
Artificial Intelligence, 1984. 22(1): p. 77-89.

[14] Klein, M., Supporting Conflict Resolution in Cooperative Design Systems. IEEE
Systems Man and Cybernetics, 1991. 21(6): p. 1379-1390.

[15] Klein, M., Exception Handling in Process Enactment Systems, . 1997, MIT

Center for Coordination Science: Cambridge MA.

[16] Klein, M., Conflict Resolution in Cooperative Design, in Computer Science.
1989, University of Illinois: Urbana-Champaign, IL.

[17] Clancey, W.J., Classification Problem Solving. Aaai, 1984: p. 49-55.

[18] Malone, T.W. and K.G. Crowston, The interdisciplinary study of Coordination.
ACM Computing Surveys, 1994. 26(1): p. 87-119.

[19] Dellarocas, C., et al. Using a Process Handbook to Design Organizational
Processes. in Proceedings of the AAAI 1994 Spring Symposium on Computational
Organization Design. 1994. Stanford, California.

[20] Malone, T.W., et al. Tools for inventing organizations: Toward a handbook of
organizational processes. in Proceedings of the 2nd IEEE Workshop on Enabling
Technologies Infrastructure for Collaborative Enterprises (WET ICE). 1993.

Morgantown, WV, USA.

[21] Klein, M., An Exception Handling Approach to Enhancing Consistency,
Completeness and Correctness in Collaborative Requirements Capture. Concurrent

Engineering Research and Applications, 1997(March).

[22] Chandrasekaran, B. and S. Mittal, Deep Versus Compiled Knowledge
Approaches To Diagnostic Problem Solving. Int. J. Man-Machine Studies, 1983: p.
425-436.

119

[23] Klein, M., Capturing Design Rationale in Concurrent Engineering Teams. IEEE

Computer, 1993. 26(1): p. 39-47.

[24] Findler, N.V. and R. Lo, An Examination of Distributed Planning in the World of
Air Traffic Control, in Readings in Distributed Artificial Intelligence, A.H. Bond and

L. Gasser, Editors. 1988, Morgan Kaufmann: California. p. 617--627.

[25] Klein, M. and S.C.-Y. Lu. Insights Into Cooperative Group Design: Experience
With the LAN Designer System. in Sixth International Conference on Applications of

Artificial Intelligence in Engineering (AIENG '91). 1991. Uk.

[26] Klein, M., Supporting Conflict Management in Cooperative Design Teams.
Journal on Group Decision and Negotiation, 1993. 2: p. 259-278.

[27] Klein, M., Conflict Management as Part of an Integrated Exception Handling
Approach. AI in Engineering Design Analysis and Manufacturing (AI EDAM), 1995.
9: p. 259-267.

[28] Klein, M., Core Services for Coordination in Concurrent Engineering. Computers
in Industry, 1996.

[29] Wu, T.D. Efficient Diagnosis of Multiple Disorders Based on a Symptom

Clustering Approach. in Proceedings of AAAI-90. 1990.

[30] Genesereth, M.R. Diagnosis Using Hierarchical Design Models. in Proceedings of
AAAI-82. 1982.

[31] Kleer, J.d., A.K. Macworth, and R. Reiter. Characterizing Diagnoses. in
Proceedings of AAAI-90. 1990.

[32] Kautz, H., et al. An Experiment in the Design of Software Agents. in Proceedings

of the Twelfth National Conference on Artificial Intelligence (AAAI-94). 1994.
Seattle, WA.

[33] Coen, M. Building Brains for Rooms: Designing Distributed Software Agents. in

Proceedings of IAAI-97. 1997.

[34] Coen, M. Towards Interactive Environments: The Intelligent Room. in
Proceedings of HCI-97. 1997.

